满分5 > 初中数学试题 >

把两个全等的直角三角板的斜边重合,组成一个四边形ABCD以D为顶点作∠MDN,交...

把两个全等的直角三角板的斜边重合,组成一个四边形ABCD以D为顶点作∠MDN,交边AC、BC于M、N.
(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;
(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;
(3)如图③,在(2)的结论下,若将M、N分改在CA、BC的延长上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)
manfen5.com 满分网
(1)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可; (2)延长CB到E,使BE=AM,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可; (3)在CB截取BE=AM,连接DE,证△DAM≌△DBE,推出∠BDE=∠MDA,DM=DE,证△MDN≌△EDN,推出MN=NE即可. (1)AM+BN=MN, 证明:延长CB到E,使BE=AM, ∵∠A=∠CBD=90°, ∴∠A=∠EBD=90°, 在△DAM和△DBE中 , ∴△DAM≌△DBE, ∴∠BDE=∠MDA,DM=DE, ∵∠MDN=∠ADC=60°, ∴∠ADM=∠NDC, ∴∠BDE=∠NDC, ∴∠MDN=∠NDE, 在△MDN和△EDN中 , ∴△MDN≌△EDN, ∴MN=NE, ∵NE=BE+BN=AM+BN, ∴AM+BN=MN. (2)AM+BN=MN, 证明:延长CB到E,使BE=AM,连接DE, ∵∠A=∠CBD=90°, ∴∠A=∠DBE=90°, ∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°, ∴∠MDN=∠ADC, ∵∠ADN=∠BDC, ∴∠MDA=∠CDN,∠CDM=∠NDB, 在△DAM和△DBE中 , ∴△DAM≌△DBE, ∴∠BDE=∠MDA=∠CDN,DM=DE, ∵∠MDN+∠ACD=90°,∠ACD+∠ADC=90°, ∴∠NDM=∠ADC=∠CDB, ∴∠ADM=∠CDN=∠BDE, ∵∠CDM=∠NDB ∴∠MDN=∠NDE, 在△MDN和△EDN中 , ∴△MDN≌△EDN, ∴MN=NE, ∵NE=BE+BN=AM+BN, ∴AM+BN=MN. (3)BN-AM=MN, 证明:在CB截取BE=AM,连接DE, ∵∠CDA+∠ACD=90°,∠MDN+∠ACD=90°, ∴∠MDN=∠ADC, ∵∠ADN=∠ADN, ∴∠MDA=∠CDN, ∵∠B=∠CAD=90°, ∴∠B=∠DAM=90°, 在△DAM和△DBE中 , ∴△DAM≌△DBE, ∴∠BDE=∠ADM=∠CDN,DM=DE, ∵∠ADC=∠BDC=∠MDN, ∴∠MDN=∠EDN, 在△MDN和△EDN中 , ∴△MDN≌△EDN, ∴MN=NE, ∵NE=BN-BE=BN-AM, ∴BN-AM=MN.
复制答案
考点分析:
相关试题推荐
某商店经销一种成本为每千克40元的产品,据市场分析,若按每千克50元销售,一个月售出500千克;销售单价每涨1元,月销售量就减少10千克,针对以上销售情况,请解答下列问题:
(1)若要使每月销售利润达到8000元,则销售单价应定为多少元?
(2)当定价为多少元时,月销售利润最大?最大利润是多少?
查看答案
如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)若⊙O的半径为3,ED=4,EO的延长线交⊙O于F,连DF、AF,求△ADF的面积.

manfen5.com 满分网 查看答案
如图,直线y=x+2交x轴于B、A两点,直线y=-x与直线y=x+2交于点P.
(1)点P关于x轴对称点坐标为______
(2)将△POB绕原点逆时针旋转90°,画出旋转后得到的△P1OB1,并写出P1、B1的坐标;
(3)求直线y=-x沿射线PA方向平移多少个单位后经过点(4,0)?

manfen5.com 满分网 查看答案
李红和张明正在玩掷骰子游戏,两人各掷一枚骰子.
(1)当两枚骰子点数之和为奇数时,李红得3分,否则,张明得1分,这个游戏公平吗?为什么?
(2)当两枚骰子的点数之和大于7时,李红得1分,否则张明得1分,这个游戏公平吗?为什么?如果不公平,请你提出一个对双方公平的意见.
查看答案
如图,M为⊙O上一点,弧MA=弧MB,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.