满分5 > 初中数学试题 >

如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是B...

如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.

manfen5.com 满分网
(1)过点D作DP⊥BC于点P,过点A作AQ⊥BC于点Q,得到CP=BQ=AB,CP+BQ=AB=1,得出BC=2CD,由点M是BC的中点,推出CM=CD,由∠C=60°,根据等边三角形的判定即可得到答案; (2)△AEF的周长存在最小值,理由是连接AM,由ABMD是菱形,得出△MAB,△MAD和△MC′D′是等边三角形,推出∠BME=∠AMF,证出△BME≌△AMF(ASA),得出BE=AF,ME=MF,推出△EMF是等边三角形,根据MF的最小值为点M到AD的距离,即EF的最小值是,即可求出△AEF的周长. (1)证明:连接AM,过点D作DP⊥BC于点P,过点A作AQ⊥BC于点Q, 即AQ∥DP, ∵AD∥BC, ∴四边形ADPQ是平行四边形, ∴AD=QP=AB=CD, ∵∠C=∠B=60°, ∴∠BAQ=∠CDP=30°, ∴CP=BQ=AB=1, 即BC=1+1+2=4, ∵CD=2, ∴BC=2CD, ∵点M是BC的中点, BC=2CM, ∴CD=CM, ∵∠C=60°, ∴△MDC是等边三角形. (2)【解析】 △AEF的周长存在最小值,理由如下: 过D作DN⊥BC于N,连接AM, ∵∠C=60°, ∴∠CDN=30°, ∵CD=2, ∴CN=1, ∴由勾股定理得:DN=, 连接AM,由(1)平行四边形ABMD是菱形, △MAB,△MAD和△MC′D′是等边三角形, ∠BMA=∠BME+∠AME=60°,∠EMF=∠AMF+∠AME=60°, ∴∠BME=∠AMF, 在△BME与△AMF中, , ∴△BME≌△AMF(ASA), ∴BE=AF,ME=MF,AE+AF=AE+BE=AB, ∵∠EMF=∠DMC=60°,故△EMF是等边三角形,EF=MF, ∵MF的最小值为点M到AD的距离等于DN的长,即是,即EF的最小值是, △AEF的周长=AE+AF+EF=AB+EF, △AEF的周长的最小值为2+, 答:存在,△AEF的周长的最小值为2+.
复制答案
考点分析:
相关试题推荐
如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.
(1)求∠CAE的度数;
(2)求这棵大树折断前的高度.(结果精确到个位,参考数据:manfen5.com 满分网=1.4,manfen5.com 满分网=1.7,manfen5.com 满分网=2.4).
manfen5.com 满分网
查看答案
为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.
查看答案
如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.

manfen5.com 满分网 查看答案
初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了______名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计该市近20 000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)
manfen5.com 满分网
查看答案
甲、乙两同学只有一张乒乓球比赛的门票,谁都想去,最后商定通过转盘游戏决定.游戏规则是:转动下面平均分成三个扇形且标有不同颜色的转盘,转盘连续转动两次,若指针前后所指颜色相同,则甲去;否则乙去.(如果指针恰好停在分割线上,那么重转一次,直到指针指向一种颜色为止)
(1)转盘连续转动两次,指针所指颜色共有几种情况?通过画树状图或列表法加以说明;
(2)你认为这个游戏公平吗?请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.