满分5 > 初中数学试题 >

如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交...

如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据一元二次方程解法得出A,B两点的坐标,再利用交点式求出二次函数解析式; (2)首先判定△MNA∽△BCA.得出,进而得出函数的最值; (3)分别根据当AF为平行四边形的边时,AF平行且等于DE与当AF为平行四边形的对角线时,分析得出符合要求的答案. 【解析】 (1)∵x2-4x-12=0, ∴x1=-2,x2=6. ∴A(-2,0),B(6,0), 又∵抛物线过点A、B、C,故设抛物线的解析式为y=a(x+2)(x-6), 将点C的坐标代入,求得, ∴抛物线的解析式为; (2)设点M的坐标为(m,0),过点N作NH⊥x轴于点H(如图(1)). ∵点A的坐标为(-2,0),点B的坐标为(6,0), ∴AB=8,AM=m+2, ∵MN∥BC,∴△MNA∽△BCA. ∴, ∴, ∴, ∴, =, =. ∴当m=2时,S△CMN有最大值4. 此时,点M的坐标为(2,0); (3)∵点D(4,k)在抛物线上, ∴当x=4时,k=-4, ∴点D的坐标是(4,-4). ①如图(2),当AF为平行四边形的边时,AF平行且等于DE, ∵D(4,-4),∴DE=4. ∴F1(-6,0),F2(2,0), ②如图(3),当AF为平行四边形的对角线时,设F(n,0), ∵点A的坐标为(-2,0), 则平行四边形的对称中心的横坐标为:, ∴平行四边形的对称中心坐标为(,0), ∵D(4,-4), ∴E'的横坐标为:-4+=n-6, E'的纵坐标为:4, ∴E'的坐标为(n-6,4). 把E'(n-6,4)代入,得n2-16n+36=0. 解得.,, 综上所述F1(-6,0),F2(2,0),F3(8-2,0),F4(8+2,0).
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系中,四边形OABC为菱形,点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l与菱形OABC的两边分别交于点M、N(点M在点N的上方).
(1)求A、B两点的坐标;
(2)设△OMN的面积为S,直线l运动时间为t秒(0≤t≤6),试求S与t的函数表达式;
(3)在题(2)的条件下,t为何值时,S的面积最大?最大面积是多少?
manfen5.com 满分网
查看答案
我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.
特产车型苦荞茶青花椒野生蘑菇






(吨)A型22
B型42
C型16
车型ABC
每辆车运费(元)150018002000
(1)设A型汽车安排x辆,B型汽车安排y辆,求y与x之间的函数关系式.
(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案.
(3)为节约运费,应采用(2)中哪种方案?并求出最少运费.
查看答案
在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,AD∥BC,坝高10m,迎水坡面AB的坡度manfen5.com 满分网,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面AB的坡度进行修改,修改后的迎水坡面AE的坡度manfen5.com 满分网
(1)求原方案中此大坝迎水坡AB的长(结果保留根号);
(2)如果方案修改前后,修建大坝所需土石方总体积不变,在方案修改后,若坝顶沿EC方向拓宽2.7m,求坝底将会沿AD方向加宽多少米?

manfen5.com 满分网 查看答案
6张不透明的卡片,除正面画有不同的图形外,其它均相同,把这6张卡片洗匀后,正面向下放在桌上,另外还有与卡片上图形形状完全相同的地板砖若干块,所有地板砖的长都相等.
(1)从这6张卡片中随机抽取一张,与卡片上图形形状相对应的这种地板砖能进行平面镶嵌的概率是多少?
(2)从这6张卡片中随机抽取2张,利用列表或画树状图计算:与卡片上图形形状相对应的这两种地板砖能进行平面镶嵌的概率是多少?
manfen5.com 满分网
查看答案
如图,E、F是平行四边形ABCD的对角线AC上的点,CE=AF,请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.