满分5 > 初中数学试题 >

如图,已知抛物线y=x2-(b+1)x+(b是实数且b>2)与x轴的正半轴分别交...

如图,已知抛物线y=manfen5.com 满分网x2-manfen5.com 满分网(b+1)x+manfen5.com 满分网(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为______,点C的坐标为______(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网
(1)令y=0,即y=x2-(b+1)x+=0,解关于x的一元二次方程即可求出A,B横坐标,令x=0,求出y的值即C的纵坐标; (2)存在,先假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP,过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,利用已知条件证明△PEC≌△PDB,进而求出x和y的值,从而求出P的坐标; (3)存在,假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似,有条件可知:要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴; 要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°;再分别讨论求出满足题意Q的坐标即可. 【解析】 (1)令y=0,即y=x2-(b+1)x+=0, 解得:x=1或b, ∵b是实数且b>2,点A位于点B的左侧, ∴点B的坐标为(b,0), 令x=0, 解得:y=, ∴点C的坐标为(0,), 故答案为:(b,0),(0,); (2)存在, 假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形. 设点P的坐标为(x,y),连接OP. 则S四边形PCOB=S△PCO+S△POB=••x+•b•y=2b, ∴x+4y=16. 过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E, ∴∠PEO=∠EOD=∠ODP=90°. ∴四边形PEOD是矩形. ∴∠EPD=90°. ∴∠EPC=∠DPB. ∴△PEC≌△PDB,∴PE=PD,即x=y. 由解得 由△PEC≌△PDB得EC=DB,即-=b-, 解得b=>2符合题意. ∴P的坐标为(,); (3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似. ∵∠QAB=∠AOQ+∠AQO, ∴∠QAB>∠AOQ,∠QAB>∠AQO. ∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴. ∵b>2, ∴AB>OA, ∴∠Q0A>∠ABQ. ∴只能∠AOQ=∠AQB.此时∠OQB=90°, 由QA⊥x轴知QA∥y轴. ∴∠COQ=∠OQA. ∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°. (I)当∠OCQ=90°时,△CQO≌△QOA. ∴AQ=CO=. 由AQ2=OA•AB得:()2=b-1. 解得:b=8±4. ∵b>2, ∴b=8+4. ∴点Q的坐标是(1,2+). (II)当∠OQC=90°时,△OCQ∽△QOA, ∴=,即OQ2=OC•AQ. 又OQ2=OA•OB, ∴OC•AQ=OA•OB.即•AQ=1×b. 解得:AQ=4,此时b=17>2符合题意, ∴点Q的坐标是(1,4). ∴综上可知,存在点Q(1,2+)或Q(1,4),使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
复制答案
考点分析:
相关试题推荐
如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.
(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;
(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.

manfen5.com 满分网 查看答案
如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).
(1)当x=manfen5.com 满分网时,求弦PA、PB的长度;
(2)当x为何值时,PD•CD的值最大?最大值是多少?

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
计算:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
查看答案
如图,分别过点Pi(i,0)(i=1、2、…、n)作x轴的垂线,交manfen5.com 满分网的图象于点Ai,交直线manfen5.com 满分网于点Bi.则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.