满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC=5,BC=6,点D为AB边上的一动点(D不与A、...

如图,在△ABC中,AB=AC=5,BC=6,点D为AB边上的一动点(D不与A、B重合),过D作DE∥BC,交AC于点E.把△ADE沿直线DE折叠,点A落在点A′处.连接BA′,设AD=x,△ADE的边DE上的高为y.
manfen5.com 满分网
(1)求出y与x的函数关系式;
(2)若以点A′、B、D为顶点的三角形与△ABC 相似,求x的值;
(3)当x取何值时,△A′DB是直角三角形.
(1)先过A点作AM⊥BC,得出BM=BC=3,再根据DE∥BC,得出AN⊥DE,即y=AN,再在Rt△ABM中,求出AM的值,再根据DE∥BC,求出△ADE∽△ABC,即可求出y与x的函数关系式; (2)根据△A'DE由△ADE折叠得到,得出AD=A'D,AE=A'E,再由(1)可得△ADE是等腰三角形,得出AD=A'D,AE=A'E,即可证出四边形ADA'E是菱形,得出∠BDA'=∠BAC,再根据∠BAC≠∠ABC,∠BAC≠∠C,得出∠BDA'≠∠ABC,∠BDA'≠∠C,从而证出△BDA'∽△BAC,即可求出x的值; (3)先分三种情况进行讨论;第一种情况当∠BDA'=90°,得出∠BDA'≠90°;第二种情况当∠BA'D=90°,根据四边形ADA'E是菱形,得出点A'必在DE垂直平分线上,即直线AM上,求出AM和A'M=的值,再在Rt△BA'M中,表示出A'B2,再在Rt△BA'D中,求出法和条件的x;第三种情况当∠A'BD=90°,根据∠A'BD=90°,∠AMB=90°,得出△BA'M∽△ABM,即可求出BA'的值,再在Rt△D BA'中,根据DB2+A'B2=A'D2,求出x的值,即可证出△A′DB是直角三角形; 【解析】 (1)过A点作AM⊥BC,垂足为M,交DE于N点,则BM=BC=3, ∵DE∥BC, ∴AN⊥DE,即y=AN. 在Rt△ABM中,AM= =4, ∵DE∥BC, ∴△ADE∽△ABC, ∴=, ∴=, ∴y=(0<x<5).         (2)∵△A'DE由△ADE折叠得到, ∴AD=A'D,AE=A'E, ∵由(1)可得△ADE是等腰三角形, ∴AD=AE, ∴A'D=A'E, ∴四边形ADA'E是菱形, ∴AC∥D A', ∴∠BDA'=∠BAC, 又∵∠BAC≠∠ABC, ∴∠BDA'≠∠ABC, ∵∠BAC≠∠C, ∴∠BDA'≠∠C, ∴有且只有当BD=A'D时,△BDA'∽△BAC, ∴当BD=A'D,即5-x=x时,x=.            (3)第一种情况:∠BDA'=90°, ∵∠BDA'=∠BAC,而∠BAC≠90°, ∴∠BDA'≠90°.           第二种情况:∠BA'D=90°, ∵四边形ADA'E是菱形,∴点A'必在DE垂直平分线上,即直线AM上, ∵AN=A'N=y=,AM=4, ∴A'M=|4-x|, 在Rt△BA'M中,A'B2=BM2+A'M2=32+(4-x)2, 在Rt△BA'D中,A'B2=BD2+A'D2=(5-x)2-x2, ∴(5-x)2-x2=32+(4-x)2, 解得 x=,x=0(舍去).              第三种情况:∠A'BD=90°, ∵∠A'BD=90°,∠AMB=90°, ∴△BA'M∽△ABM, 即=,∴BA'=, 在Rt△D BA'中,DB2+A'B2=A'D2, (5-x)2+=x2, 解得:x=.         综上可知当x=、x=时,△A'DB是直角三角形.
复制答案
考点分析:
相关试题推荐
如图,已知抛物线y=manfen5.com 满分网x2-manfen5.com 满分网(b+1)x+manfen5.com 满分网(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为______,点C的坐标为______(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.
(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;
(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.

manfen5.com 满分网 查看答案
如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).
(1)当x=manfen5.com 满分网时,求弦PA、PB的长度;
(2)当x为何值时,PD•CD的值最大?最大值是多少?

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
计算:
(1)manfen5.com 满分网
(2)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.