满分5 > 初中数学试题 >

如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA...

如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,
(1)求该二次函数的关系式;
(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:
①证明:∠ANM=∠ONM;
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.

manfen5.com 满分网
(1)由二次函数的顶点坐标,设出二次函数的顶点式,再由二次函数过原点,将原点坐标代入设出的解析式中,确定出a的值,即可求出二次函数的解析式; (2)①过A作AH垂直于直线l,直线l与x轴交于点D,由A在二次函数图象上,设A横坐标为m,将x=m代入二次函数解析式,表示出纵坐标,确定出A的坐标,再由O的坐标,表示出直线AO的解析式,进而表示出M,N及H的坐标,得出OD,ND,HA,及NH,在直角三角形OND中,利用锐角三角函数定义表示出tan∠ONM,在直角三角形ANH中,利用锐角三角函数定义表示出tan∠ANM,化简后得到tan∠ONM=tan∠ANM,可得出∠ONM=∠ANM,得证; ②△ANO能为直角三角形,理由为:分三种情况考虑:若∠ONA为直角,由①得到∠ANM=∠ONM=45°,可得出三角形AHN为等腰直角三角形,得到AH=HN,将表示出的AH及HN代入,得到关于m的方程,求出方程的解得到m的值为0或4±,进而得到此时A与P重合,不合题意,故∠ONA不能为直角;若∠AON为直角,利用勾股定理得到OA2+ON2=AN2,由A的坐标,利用勾股定理表示出OA2,由OD及DN,利用勾股定理表示出ON2,由AH及HN,利用勾股定理表示出AN2,代入OA2+ON2=AN2,得到关于m的方程,求出方程的解得到m的值为4±4或0,然后判断∠AON是否为直角;若∠NAO为直角,则有△AMN∽△DMO∽△DON,由相似得比例,将各自的值代入得到关于m的方程,求出方程的解得到m的值为4,此时A与P重合,故∠NAO不能为直角,综上,点A在对称轴l右侧的二次函数图象上运动时,△ANO不能为直角三角形. 【解析】 (1)∵二次函数的顶点坐标为(4,-4), ∴设二次函数的解析式为y=a(x-4)2-4, 又二次函数过(0,0), ∴0=a(0-4)2-4,解得:a=, ∴二次函数解析式为y=(x-4)2-4=x2-2x; (2)①证明:过A作AH⊥l于H,l与x轴交于点D,如图所示: 设A(m,m2-2m),又O(0,0), ∴直线AO的解析式为y=x=(m-2)x, 则M(4,m-8),N(4,-m),H(4,m2-2m), ∴OD=4,ND=m,HA=m-4,NH=ND-HD=m2-m, 在Rt△OND中,tan∠ONM==, 在Rt△ANH中,tan∠ANM====, ∴tan∠ONM=tan∠ANM, 则∠ANM=∠ONM; ②△ANO能为直角三角形,理由如下: 分三种情况考虑: (i)若∠ONA为直角,由①得:∠ANM=∠ONM=45°, ∴△AHN为等腰直角三角形, ∴HA=NH,即m-4=m2-m, 整理得:m2-8m+16=0,即(m-4)2=0, 解得:m=4, 此时点A与点P重合,故不存在A点使△ONA为直角三角形; (ii)若∠AON为直角,根据勾股定理得:OA2+ON2=AN2, ∵OA2=m2+(m2-2m)2,ON2=42+m2,AN2=(m-4)2+(m2-2m+m)2, ∴m2+(m2-2m)2+42+m2=(m-4)2+(m2-2m+m)2, 整理得:m(m2-8m-16)=0, 解得:m=0或m=4+4或4-4(舍去), 当m=0时,A点与原点重合,故∠AON不能为直角, 当m=4+4,即A(4+4,4)时,N为第四象限点,成立,故∠AON能为直角; (iii)若∠NAO为直角,可得∠NAM=∠ODM=90°,且∠AMN=∠DMO, ∴△AMN∽△DMO, 又∠MAN=∠ODN=90°,且∠ANM=∠OND, ∴△AMN∽△DON, ∴△AMN∽△DMO∽△DON, ∴=,即=, 整理得:(m-4)2=0, 解得:m=4, 此时A与P重合,故∠NAO不能为直角, 综上,点A在对称轴l右侧的二次函数图象上运动时,△ANO能为直角三角形,当m=4+4,即A(4+4,4)时,N为第四象限点,成立,故∠AON能为直角.
复制答案
考点分析:
相关试题推荐
如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,manfen5.com 满分网
(1)求证:△ADN≌△CBM;
(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;
(3)点P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的长度.
查看答案
如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:
(1)画出△ABC关于原点O对称的△A1B1C1
(2)平移△ABC,使点A移到点A2(0,2),画出平移后△A2B2C2并写出点B2、C2的坐标;
(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2______成中心对称,其对称中心坐标为______

manfen5.com 满分网 查看答案
某校有学生2100人,在“文明我先行”活动中,开设了“法律、礼仪、环保、感恩、互助”五门小笨课程,规定每位学生必须且只能选一门,为了解学生的报名意向,学校随机调查了100名学生,并制成统计表:
                                                                        校本课程意向统计表
课程类型频数频率(%)
法律s 0.08
礼仪a0.20
环保270.27
感恩bm
互助150.15
合计1001.00
请根据统计表的信息,解答下列问题;
(1)在这次调查活动中,学校采取的调查方式是______(填写“普查”或“抽样调查”);
(2)a=______,b=______,m=______
(3)如果要画“校本课程报名意向扇形统计图”,那么“礼仪”类校本课程对应的扇形圆心角的度数是______
(4)请你估计,选择“感恩”类校本课程的学生约有______人.
查看答案
为了进一步推进海南国际旅游岛建设,海口市自2012年4月1日起实施《海口市奖励旅行社开发客源市场暂行办法》,第八条规定:“旅行社引进会议规模达到200人以上,入住本市A类旅游饭店,每次会议奖励2万元;入住本市B类旅游饭店,每次会议奖励1万元.”某旅行社5月份引进符合奖励规定的会议共18次,得到28万元奖金,求此旅行社引进符合奖励规定的入住A类和B类旅游饭店的会议各多少次?
查看答案
(1)计算:manfen5.com 满分网+manfen5.com 满分网+|-4|-(manfen5.com 满分网-1
(2)解不等式组:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.