满分5 > 初中数学试题 >

如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于...

如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.
(1)证明:△ACE∽△FBE;
(2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.

manfen5.com 满分网
(1)欲证△ACE∽△FBE,通过观察发现两个三角形已经具备一组角对应相等,即∠AEC=∠FEB,此时,再证∠AC′C=∠ABB′即可. (2)欲证△ACE≌△FBE,由(1)知△ACE∽△FBE,只需证明CE=BE,由已知可证∠ABC=∠BCE=α,即证β=2α时,△ACE≌△FBE. (1)证明:∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的, ∴AC=AC′,AB=AB′,∠CAB=∠C′AB′, ∴∠CAB+∠BAC′=∠C′AB′+∠BAC′,即∠CAC′=∠BAB′, ∴∠ABB′=∠AB′B=∠ACC′=∠AC′C, ∴∠ACC′=∠ABB′, 又∵∠AEC=∠FEB, ∴△ACE∽△FBE. (2)【解析】 当β=2α时,△ACE≌△FBE. 在△ACC′中, ∵AC=AC′, ∴∠ACC′===90°-α, 在Rt△ABC中, ∠ACC′+∠BCE=90°,即90°-α+∠BCE=90°, ∴∠BCE=α, ∵∠ABC=α, ∴∠ABC=∠BCE, ∴CE=BE, 由(1)知:△ACE∽△FBE, ∴∠BEF=∠CEA,∠FBE=∠ACE, 又∵CE=BE, ∴△ACE≌△FBE.
复制答案
考点分析:
相关试题推荐
某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
进价(元/件)1535
售价(元/件)2045
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
查看答案
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2manfen5.com 满分网,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
有三张背面完全相同的卡片,它们的正面分别写上manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.
(1)直接写出小丽取出的卡片恰好是manfen5.com 满分网的概率;
(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.
查看答案
化简:manfen5.com 满分网
查看答案
计算:(-1)2012-|-7|+manfen5.com 满分网×(manfen5.com 满分网-π)+( manfen5.com 满分网-1
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.