满分5 > 初中数学试题 >

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(...

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

manfen5.com 满分网
(1)根据抛物线的对称轴可求出B点的坐标,进而可用待定系数法求出抛物线的解析式; (2)由于A、B关于抛物线的对称轴直线对称,若连接BC,那么BC与直线x=1的交点即为所求的点M;可先求出直线BC的解析式,联立抛物线对称轴方程即可求得M点的坐标; (3)若∠PCB=90°,根据△BCO为等腰直角三角形,可推出△CDP为等腰直角三角形,根据线段长度求P点坐标. 【解析】 (1)∵抛物线的对称轴为x=1,且A(-1,0), ∴B(3,0); 可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3), 则有:a(0+1)(0-3)=-3,a=1; ∴y=(x+1)(x-3)=x2-2x-3; (2)由于A、B关于抛物线的对称轴直线x=1对称, 那么M点为直线BC与x=1的交点; 由于直线BC经过C(0,-3),可设其解析式为y=kx-3, 则有:3k-3=0,k=1; ∴直线BC的解析式为y=x-3; 当x=1时,y=x-3=-2, 即M(1,-2); (3)设经过C点且与直线BC垂直的直线为直线l,作PD⊥y轴,垂足为D; ∵OB=OC=3, ∴CD=DP=1,OD=OC+CD=4, ∴P(1,-4).
复制答案
考点分析:
相关试题推荐
甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:
(1)港口A与小岛C之间的距离;
(2)甲轮船后来的速度.

manfen5.com 满分网 查看答案
如图,Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,连接CC′交斜边于点E,CC′的延长线交BB′于点F.
(1)证明:△ACE∽△FBE;
(2)设∠ABC=α,∠CAC′=β,试探索α、β满足什么关系时,△ACE与△FBE是全等三角形,并说明理由.

manfen5.com 满分网 查看答案
某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
进价(元/件)1535
售价(元/件)2045
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
查看答案
如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2manfen5.com 满分网,∠DPA=45°.
(1)求⊙O的半径;
(2)求图中阴影部分的面积.

manfen5.com 满分网 查看答案
有三张背面完全相同的卡片,它们的正面分别写上manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.
(1)直接写出小丽取出的卡片恰好是manfen5.com 满分网的概率;
(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.