如图所示,在平面直角坐标系中,以点M(2,3)为圆心,5为半径的圆交x轴于A,B两点,过点M作x轴的垂线,垂足为D;过点B作⊙M的切线,与直线MD交于N点.
(1)求点B、点N的坐标以及直线BN的解析式;
(2)求过A、N、B、三点(对称轴与y轴平行)的抛物线的解析式;
(3)设(2)中的抛物线与y轴交于点P,以点D,B,P三点为顶点作平行四边形,请你求出第四个顶点Q的坐标,并判断Q是否在(2)中的抛物线上.
考点分析:
相关试题推荐
已知,如图,AB是⊙O的直径,AD是弦,C是弧AB的中点,连接BC并延长与AD的延长线相交于点P,BE⊥DC,垂足为E,DF∥EB,交AB与点F,FH⊥BD,垂足为H,BC=4,CP=3.
求(1)BD和DH的长;(2)BE•BF的值.
查看答案
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?
查看答案
如图,已知ED∥BC,∠EAB=∠BCF,
(1)四边形ABCD为平行四边形;
(2)求证:OB
2=OE•OF;
(3)连接OD,若∠OBC=∠ODC,求证:四边形ABCD为菱形.
查看答案
城市规划期间,欲拆除一电线杆AB(如图),已知距电线杆AB水平距离14m的D处有一大坝,背水坝CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)(
≈1.732,
≈1.414)
查看答案
把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.
(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?
(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.
查看答案