满分5 > 初中数学试题 >

如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠OD...

如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求△DFB的面积.

manfen5.com 满分网
(1)直线BD和⊙O的位置关系是相切,理由是由∠AEC=∠ABC,∠AEC=∠ODB,得到∠ABC=∠ODB,求出∠BOD+∠D=90°,推出∠OBD=90°,即可得到 (2)根据垂径定理得出BF=CF=BC=4,连接AC,由AB是圆的直径得到∠ACB=∠DFB=90°,证出△ACB∽△BED,根据相似三角形的性质得到===,求出△ABC的面积,即可求出△DFB的面积. (1)答:直线BD和⊙O的位置关系是相切, 证明:∵∠AEC=∠ABC,∠AEC=∠ODB, ∴∠ABC=∠ODB, ∵OD⊥弦BC, ∴∠OFB=90°, ∴∠DOB+∠ABC=90°, ∴∠BOD+∠D=90°, ∴∠OBD=180°-90°=90°, ∵OB是半径, ∴直线BD是圆O的切线, 即直线BD和⊙O的位置关系是相切; (2)【解析】 ∵OD⊥BC,OE是圆O的半径,BC=8, ∴BF=CF=BC=4, ∠DFB=90°, 连接AC, ∵AB是圆的直径, ∴∠ACB=∠DFB=90°, ∵∠D=∠ABC, ∴△ACB∽△BFD, ∴===, ∵△ABC的面积是×6×8=24, ∴△DFB的面积是, 答:△DFB的面积是.
复制答案
考点分析:
相关试题推荐
如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OC=manfen5.com 满分网,∠CAO=30°.将Rt△OAC折叠,使OC边落在AC边上,点O与点D重合,折痕为CE.
(1)求折痕CE所在直线的解析式;
(2)求点D的坐标.

manfen5.com 满分网 查看答案
有三张卡片(背面完全相同)分别写有manfen5.com 满分网,-2,3,把它们背面朝上洗匀后,小军从中抽取一张,记下这个数后放回洗匀,小明又从中抽出一张.
(1)小军抽取的卡片是manfen5.com 满分网的概率是______;两人抽取的卡片都是3的概率是______
(2)李刚为他们俩设计了一个游戏规则:若两人抽取的卡片上两数之积是有理数,则小军获胜,否则小明获胜.你认为这个游戏规则对谁有利?请用列表法或树状图进行分析说明.
查看答案
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且
AF=BD,连接BF.
(1)求证:D是BC的中点.
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

manfen5.com 满分网 查看答案
某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.
(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?
(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?
(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.

manfen5.com 满分网 查看答案
先化简manfen5.com 满分网,然后从manfen5.com 满分网中选取一个你认为合适的数作为x的值代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.