满分5 > 初中数学试题 >

我们把既有外接圆又有内切圆的四边形称为双圆四边形,如图1,四边形ABCD是双圆四...

我们把既有外接圆又有内切圆的四边形称为双圆四边形,如图1,四边形ABCD是双圆四边形,其外心为O1,内心为O2
(1)在平行四边形、矩形、菱形、正方形、等腰梯形中,双圆四边形有______个;
(2)如图2,在四边形ABCD中,已知:∠B=∠D=90°,AB=AD,问:这个四边形是否是双圆四边形?如果是,请给出证明;如果不是,请说明理由;
(3)如图3,如果双圆四边形ABCD的外心与内心重合于点O,试判定这个四边形的形状,并说明理由.
manfen5.com 满分网
(1)有给出的图形可知只有正方形是双圆四边形; (2)可先设AC的中点为O1,证明A、B、C、D在以O1为圆心,以O1A为半径的圆上;再作∠ABC的平分线,交AC于O2,分别作O2E⊥AB,O2F⊥BC,O2G⊥CD,O2H⊥AD,E、F、G、H是垂足,再证明O2E=O2F=O2G=O2H即可; (3)利用垂径定理,圆心角定理可证明这个四边形是正方形. 【解析】 (1)1; (2)四边形ABCD是双圆四边形. 证明:设AC的中点为O1, ∵∠ABC=∠ADC=90°, ∴O1B=O1D==O1A=O1C, ∴A、B、C、D在以O1为圆心,以O1A为半径的圆上. 作∠ABC的平分线,交AC于O2,分别作O2E⊥AB,O2F⊥BC,O2G⊥CD,O2H⊥AD,E、F、G、H是垂足,O2E=O2F. 在Rt△ABC和Rt△ADC中, ∵AB=AD,AC=AC, ∴Rt△ABC≌Rt△ADC, ∴∠BAC=∠DAC,∠BCA=∠DCA, ∴O2E=O2H,O2G=O2F, 即O2E=O2F=O2G=O2H, ∴以O2为圆心,以O2E为半径的圆与四边形ABCD的各边都相切. 故四边形ABCD是双圆四边形. (3)四边形ABCD是正方形.理由如下: ∵小圆是四边形ABCD的内切圆, ∴圆心O到AB、BC、CD、DA的距离相等. 又∵AB、BC、CD、DA是大圆的弦, ∴弧AB=弧BC=弧CD=弧DA, ∴四边形ABCD是正方形.
复制答案
考点分析:
相关试题推荐
如图,一面利用墙,用篱笆围成一个外形为矩形的花圃,花圃的面积为S平方米,平行于院墙的一边长为x米.
(1)若院墙可利用最大长度为10米,篱笆长为24米,花圃中间用一道篱笆间隔成两个小矩形,求S与x之间函数关系.
manfen5.com 满分网
(2)在(1)的条件下,围成的花圃面积为45平方米时,求AB的长.能否围成面积比45平方米更大的花圃?如果能,应该怎么围?如果不能请说明理由.
(3)当院墙可利用最大长度为40米,篱笆长为77米,中间建n道篱笆间隔成小矩形,当这些小矩形为正方形,且x为正整数时,请直接写出一组满足条件的x,n的值.
manfen5.com 满分网
查看答案
已知:正方形ABCD的边长为1,点P为对角线BD上一点,连接CP.
(1)如图1,当BP=BC时,作PE⊥PC,交AB边于E,求BE的长;
(2)如图2,当DP=DC时,作PE⊥PC,交BC边于E,求BE的长.
manfen5.com 满分网
查看答案
已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.
(1)从口袋中随机取出一个球(不放回),接着再取出一个球,请用树形图或列表的方法求取出的两个都是黄色球的概率;
(2)小明往该口袋中又放入红色球和黄色球若干个,一段时间后他记不清具体放入红色球和黄色球的个数,只记得一种球的个数比另一种球的个数多1,且从口袋中取出一个黄色球的概率为manfen5.com 满分网,请问小明又放入该口袋中红色球和黄色球各多少个?
查看答案
X市与W市之间的城际铁路正在紧张有序的建设中,在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数如下:
车厢节数n4710
往返次数m16104
(1)请你根据上表数据,在三个函数模型:①y=kx+b(k,b为常数,k≠0);②y=manfen5.com 满分网(k为常数,k≠0)③y=ax2+bx+c(a,b,c为常数,a≠0)中,选取一个合适的函数模型,求出的m关于n的函数关系式是m=______(不写n的取值范围);
(2)结合你的求出的函数探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数Q最多(每节车厢容量设定为常数p)
查看答案
如图,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得到四边形A1B1C1D1
(1)写出点D1的坐标______,点D旋转到点D1所经过的路线长______

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.