欲求S四BEMC,可将化为求S△BEC和S△EMC,根据题意,两三角形均为直角三角形,故只需求出B到CD的距离和E、C两点的坐标即可.
【解析】
根据题意,直线y=-x+2与x轴交于C,与y轴交于D,
分别令x=0,y=0,
得y=2,x=4,
即D(0,2),C(4,0),
即DC=2,
又AD⊥DC且过点D,
所以直线AD所在函数解析式为:y=2x+2,
令y=0,得x=-1,
即A(-1,0),
同理可得B点的坐标为B(3,-2)
又B为双曲线(k<0)上,
代入得k=-6.
即双曲线的解析式为
与直线DC联立,
,
得和
根据题意,不合题意,
故点E的坐标为(6,-1).
所以BC=,CE=,
CM=2,EM=1,
所以S△BEC=×BC×EC=,
S△EMC=×EM×CM=1,
故S四BEMC=S△BEC+S△EMC=.
故答案为:.