满分5 > 初中数学试题 >

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收...

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=manfen5.com 满分网(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润manfen5.com 满分网(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?
(1)由可获得利润P=-(x-60)2+41(万元),即可知当x=60时,P最大,最大值为41,继而求得5年所获利润的最大值; (2)首先求得前两年的获利最大值,注意前两年:0≤x≤50,此时因为P随x的增大而增大,所以x=50时,P值最大;然后后三年:设每年获利y,设当地投资额为a,则外地投资额为100-a,即可得函数y=P+Q=[-(a-60)2+41]+[-a2+a+160],整理求解即可求得最大值,则可求得按规划实施,5年所获利润(扣除修路后)的最大值; (3)比较可知,该方案是具有极大的实施价值. 【解析】 (1)∵每投入x万元,可获得利润P=-(x-60)2+41(万元), ∴当x=60时,所获利润最大,最大值为41万元, ∴若不进行开发,5年所获利润的最大值是:41×5=205(万元); (2)前两年:0≤x≤50,此时因为P随x的增大而增大, 所以x=50时,P值最大,即这两年的获利最大为:2×[-(50-60)2+41]=80(万元), 后三年:设每年获利y,设当地投资额为a,则外地投资额为100-a, ∴Q=-[100-(100-a)]2+[100-(100-a)]+160=-a2+a+160, ∴y=P+Q=[-(a-60)2+41]+[-a2+a+160]=-a2+60a+165=-(a-30)2+1065, ∴当a=30时,y最大且为1065, ∴这三年的获利最大为1065×3=3195(万元), ∴5年所获利润(扣除修路后)的最大值是:80+3195-50×2=3175(万元). (3)有很大的实施价值. 规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.
复制答案
考点分析:
相关试题推荐
如图,在圆内接四边形ABCD中,CD为∠BCA的外角的平分线,F为manfen5.com 满分网上一点,BC=AF,延长DF与BA的延长线交于E.
(1)求证:△ABD为等腰三角形.
(2)求证:AC•AF=DF•FE.

manfen5.com 满分网 查看答案
A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图象.
(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;
(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.

manfen5.com 满分网 查看答案
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处.
(1)说明本次台风会影响B市;
(2)求这次台风影响B市的时间.

manfen5.com 满分网 查看答案
“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:
manfen5.com 满分网
(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;
(2)求图②中表示家长“无所谓”的圆心角的度数;
(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.
查看答案
如图,四边形ABCD中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.