满分5 > 初中数学试题 >

如图1、2是两个相似比为1:的等腰直角三角形,将两个三角形如图3放置,小直角三角...

如图1、2是两个相似比为1:manfen5.com 满分网的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
manfen5.com 满分网
manfen5.com 满分网
(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
(1)连CD,由条件得到点D为AB的中点,则CD=AD,∠4=∠A=45°,易证△CDF≌△ADE,△CED≌△BFD,得到CF=AE,CE=BF,而CE2+CF2=EF2,因此得到结论. (2)把△CFB绕点C顺时针旋转90°,得到△CGA,根据旋转的性质得到CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°,易证△CGE≌△CFE,得到GE=EF,即可得到结论AE2+BF2=EF2仍然成立; (3)把△ADF绕点A顺时针旋转90°得到△ABP,点N的对应点为Q,根据旋转的性质得到∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=CN,AF=AP,又△CEF的周长等于正方形ABCD的周长的一半,得到EF=BE+DF,则EF=EP,证得△AMQ≌△AMN,得到MN=QM,易证得∠QBN=90°,于是有BQ2+BM2=QM2,从而得到BM2+DN2=MN2. 证明:(1)连CD,如图4, ∵两个等腰直角三角形的相似比为1:, 而小直角三角形的斜边等于大直角三角形的直角边, ∴点D为AB的中点, ∴CD=AD,∠4=∠A=45°, 又∵∠1+∠2=∠2+∠3=90°, ∴∠3=∠1, ∴△CDF≌△ADE, ∴CF=AE, 同理可得△CED≌△BFD, ∴CE=BF, 而CE2+CF2=EF2, ∴AE2+BF2=EF2; (2)结论AE2+BF2=EF2仍然成立.理由如下: 把△CFB绕点C顺时针旋转90°,得到△CGA,如图5 ∴CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°, ∴∠GAE=90°, 而∠3=45°, ∴∠2+∠4=90°-45°=45°, ∴∠1+∠2=45°, ∴△CGE≌△CFE, ∴GE=EF, 在Rt△AGE中,AE2+AG2=GE2, ∴AE2+BF2=EF2; (3)线段BM、MN、DN能构成直角三角形的三边长.理由如下: 把△ADF绕点A顺时针旋转90°得到△ABP,点N的对应点为Q,如图 ∴∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=DN,AF=AP, ∵△CEF的周长等于正方形ABCD的周长的一半, ∴EF=BE+DF, ∴EF=EP, ∴△AEF≌△AEP, ∴∠1=∠3+∠4, 而AQ=AN, ∴△AMQ≌△AMN, ∴MN=QM, 而∠ADN=∠QBA=45°,∠ABD=45°, ∴∠QBN=90°, ∴BQ2+BM2=QM2, ∴BM2+DN2=MN2.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,函数y=manfen5.com 满分网(m>0)的图象经过点A(1,4)、B(a,b),其中a>1.过点A作x轴的垂线,垂足为C;过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连接AB、AD、BC、CD.
(1)求m的值;
(2)求证:CD∥AB;
(3)当AD=BC时,求直线AB的函数解析式.

manfen5.com 满分网 查看答案
某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.
manfen5.com 满分网
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?
查看答案
如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量景点D位于景点A的北偏东30°方向8km处,位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.
(1)景区管委会准备由景点D向公路a修建一条距离最短的公路,不考虑其它因素,求出这条公路的长;(结果精确到0.1km)
(2)求景点C与景点D之间的距离.(结果精确到1km)
(参考数据:manfen5.com 满分网=1.73,manfen5.com 满分网=2.24,sin53°=cos37°=0.80,sin37°=cos53°=0.60,tan53°=1.33,tan37°=0.75,sin38°=cos52°=0.62,sin52°=cos38°=0.79,tan38°=0.78,tan52°=1.28,sin75°=0.97,cos75°=0.26,tan75°=3.73.)

manfen5.com 满分网 查看答案
化简求值:[(x+2y)2-(x+y)(3x-y)-5y2]÷2x,其中x=-2,y=manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.