已知:如图,直线
交x轴于O
1,交y轴于O
2,⊙O
2与x轴相切于O点,交直线O
1O
2于P点,以O
1为圆心,O
1P为半径的圆交x轴于A、B两点,PB交⊙O
2于点F,⊙O
1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O
2的切线;
(3)EO
1的延长线交⊙O
1于C点,若G为BC上一动点,以O
1G为直径作⊙O
3交O
1C于点M,交O
1B于N.下列结论:①O
1M•O
1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.
考点分析:
相关试题推荐
企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y
1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:
月份x(月) | 1 | 2 | 3 | 4 | 5 | 6 |
输送的污水量y1(吨) | 12000 | 6000 | 4000 | 3000 | 2400 | 2000 |
7至12月,该企业自身处理的污水量y
2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为
.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z
1(元)与月份x之间满足函数关系式:
,该企业自身处理每吨污水的费用:z
2(元)与月份x之间满足函数关系式:
;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.
(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y
1,y
2与x之间的函数关系式;
(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;
(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.
(参考数据:
≈15.2,
≈20.5,
≈28.4)
查看答案
点B与点A(-1,1)关于原点O对称,P是动点,且P点在x
2+3y
2=4(x≠±1)的图象上,设直线AP和BP分别与直线x=3交于点M,N,则存在点P使得△PAB与△PMN的面积相等,那么点P的坐标为
.
查看答案
已知关于x、y的方程组
的解是一对异号的数,则k的取值范围是
.
查看答案
如图,在平面直角坐标系中,有二次函数
,顶点为H,与x轴交于A、B两点(A在B左侧),易证点H、B关于直线l:
对称,且A在直线l上.过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,则HN+NM+MK的最小值为
查看答案
如图,△ACB内接于⊙O,D为弧BC的中点,ED切⊙O于D,与AB的延长线相交于E,若AC=2,AB=6,ED+EB=6,那么AD=
.
查看答案