连AC,过F作FH⊥DC于H,根据折叠的性质得∠EA′F=∠EAF=90°,FA′=FA,由E A′恰好与⊙0相切于点A′,根据切线的性质得OA′⊥EA′,则点F、A′、O共线,即FG过圆心O;再根据正方形的性质得到AC经过点O,且OA=OC,易证得△OAF≌△OCG,则OF=OG,AF=CG,易得FA′=GN,设FA=x,DC=8,ON=2,则FA′=DH=CG=GN=x,FG=FA′+A′N+NG=2x+4,HG=DC-DH-CG=8-2x,在Rt△FGH中,利用勾股定理得到FG2=FH2+HG2,即(2x+4)2=82+(8-2x)2,解出x=,则可计算出A′G=A′N+NG=4+=.
【解析】
连AC,过F作FH⊥DC于H,如图.
∵△AEF沿EF折叠得到△A′EF,
∴∠EA′F=∠EAF=90°,FA′=FA,
∵E A′恰好与⊙0相切于点A′,
∴OA′⊥EA′,
∴点F、A′、O共线,即FG过圆心O,
又∵点O为正方形的中心,
∴AC经过点O,
∴OA=OC,
易证得△OAF≌△OCG,
∴OF=OG,AF=CG,
∵OA′=ON,
∴FA′=GN,
设FA=x,DC=8,ON=2,则FA′=DH=CG=GN=x,FG=FA′+A′N+NG=2x+4,HG=DC-DH-CG=8-2x,
在Rt△FGH中,FG2=FH2+HG2,
∴(2x+4)2=82+(8-2x)2,解得x=,
∴A′G=A′N+NG=4+=.
故答案为.