满分5 > 初中数学试题 >

如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交C...

如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB=4,BC=6,∠B=60度.
(1)求点E到BC的距离;
(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥AB交折线ADC于点N,连接PN,设EP=x.
①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;
②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
manfen5.com 满分网
(1)可通过构建直角三角形然后运用勾股定理求解. (2)①△PMN的形状不会变化,可通过做EG⊥BC于G,不难得出PM=EG,这样就能在三角形BEG中求出EG的值,也就求出了PM的值,如果做PH⊥MN于H,PH是三角形PMH和PHN的公共边,在直角三角形PHM中,有PM的值,∠PMN的度数也不难求出,那么就能求出MH和PH的值,也就求出HN和PN的值了,有了PN,PM,MN的值,就能求出三角形MPN的周长了. ②本题分两种情况进行讨论: 1、N在CD的DF段时,PM=PN.这种情况同①的计算方法. 2、N在CD的CF段时,又分两种情况进行讨论 MP=MN时,MC=MN=MP,这样有了MC的值,x也就能求出来了 NP=NM时,我们不难得出∠PMN=120°,又因为∠MNC=60°因此∠PNM+∠MNC=180度.这样点P与F就重合了,△PMC即这是个直角三角形,然后根据三角函数求出MC的值,然后就能求出x了. 综合上面的分析把△PMC是等腰三角形的情况找出来就行了. 【解析】 (1)如图1,过点E作EG⊥BC于点G. ∵E为AB的中点, ∴BE=AB=2 在Rt△EBG中,∠B=60°,∴∠BEG=30度. ∴BG=BE=1,EG= 即点E到BC的距离为 (2)①当点N在线段AD上运动时,△PMN的形状不发生改变. ∵PM⊥EF,EG⊥EF, ∴PM∥EG,又EF∥BC, ∴四边形EPMG为矩形, ∴EP=GM,PM=EG= 同理MN=AB=4. 如图2,过点P作PH⊥MN于H, ∵MN∥AB, ∴∠NMC=∠B=60°,又∠PMC=90°, ∴∠PMH=∠PMC-∠NMC=30°. ∴PH=PM= ∴MH=PM•cos30°= 则NH=MN-MH=4- 在Rt△PNH中,PN= ∴△PMN的周长=PM+PN+MN= ②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形. 当PM=PN时,如图3,作PR⊥MN于R,则MR=NR. 类似①,PM=,∠PMR=30°, MR=PMcos30°=×=, ∴MN=2MR=3. ∵△MNC是等边三角形, ∴MC=MN=3. 此时,x=EP=GM=BC-BG-MC=6-1-3=2. 当MP=MN时, ∵EG=, ∴MP=MN=, ∵∠B=∠C=60°, ∴△MNC是等边三角形, ∴MC=MN=MP=(如图4), 此时,x=EP=GM=6-1-, 当NP=NM时,如图5,∠NPM=∠PMN=30度. 则∠PNM=120°,又∠MNC=60°, ∴∠PNM+∠MNC=180度. 因此点P与F重合,△PMC为直角三角形. ∴MC=PM•tan30°=1. 此时,x=EP=GM=6-1-1=4. 综上所述,当x=2或4或(5-)时,△PMN为等腰三角形.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CF、AC.
(1)求证:四边形ABFC是平行四边形;
(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.
查看答案
为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每个月收取水费y(元)与用水量x(吨)之间的函数关系如图,按上述分段收费标准,小明家三、四月份分别交水费26元和18元,求小明家四月份比三月份少用水多少吨?

manfen5.com 满分网 查看答案
某公司组织部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.
manfen5.com 满分网
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若A馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若小明抽得的数字比小华抽得的数字大,门票给小明,否则给小华.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平?
查看答案
如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:manfen5.com 满分网,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.
(1)山坡坡角(即∠ABC)的度数等于______度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:manfen5.com 满分网≈1.732).

manfen5.com 满分网 查看答案
附加题:某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.
(1)求第一批购进书包的单价是多少元?
(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.