在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
考点分析:
相关试题推荐
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=
∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
(1)当AB=AC时,(如图1),
①∠EBF=______°;
②探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图2),求
的值(用含k的式子表示).
查看答案
如图,一次函数y
1=k
1x+2与反比例函数
的图象交于点A(4,m)和B(-8,-2),与y轴交于点C.
(1)k
1=______,k
2=______;
(2)根据函数图象可知,当y
1>y
2时,x的取值范围是______;
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S
四边形ODAC:S
△ODE=3:1时,求点P的坐标.
查看答案
已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
查看答案
为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.
(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?
(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?
查看答案
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-2,-3和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=-x-2上的概率.
查看答案