满分5 > 初中数学试题 >

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三...

在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

manfen5.com 满分网
(1)由待定系数法将A(-4,0),B(0,-4),C(2,0)三个点的坐标代入y=ax2+bx+c,联立求解即可; (2)过M作x轴的垂线,设垂足为D.设点M的坐标为(m,n),即可用含m的代数式表示MD、OD的长,分别求出△AMD、梯形MDOB、△AOB的面积,那么△AMD、梯形MDOB的面积和减去△AOB的面积即为△AMB的面积,由此可得关于S、m的函数关系式,根据函数的性质即可求得S的最大值. (3)解决此题需要充分利用平行四边形的性质求解.设P(x,x2+x-4), ①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,则Q(x,-x).由PQ=OB即可求出结论; ②如图2,当OB为对角线时,那么P、Q的横坐标互为相反数(若P的横坐标为x,则Q的横坐标为-x),即Q(-x,x).由P、O的纵坐标差的绝对值等于Q、B纵坐标差的绝对值,得x2+x-4=-4-x,求出x的值即可. 【解析】 (1)设抛物线的解析式为y=a(x+4)(x-2), 把B(0,-4)代入得,-4=a×(0+4)(0-2),解得a=, ∴抛物线的解析式为:y=(x+4)(x-2),即y=x2+x-4; (2)过点M作MD⊥x轴于点D,设M点的坐标为(m,n), 则AD=m+4,MD=-n,n=m2+m-4, ∴S=S△AMD+S梯形DMBO-S△ABO = =-2n-2m-8 =-2×(m2+m-4)-2m-8 =-m2-4m =-(m+2)2+4(-4<m<0); ∴S最大值=4. (3)设P(x,x2+x-4). ①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB, ∴Q的横坐标等于P的横坐标, 又∵直线的解析式为y=-x, 则Q(x,-x). 由PQ=OB,得|-x-(x2+x-4)|=4,解得x=0,-4,-2±2.x=0不合题意,舍去.由此可得Q(-4,4)或(-2+2,2-2)或(-2-2,2+2); ②如图2,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4). 故满足题意的Q点的坐标有四个,分别是(-4,4),(4,-4),(-2+2,2-2),(-2-2,2+2).
复制答案
考点分析:
相关试题推荐
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=manfen5.com 满分网∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
(1)当AB=AC时,(如图1),
①∠EBF=______°;
②探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图2),求manfen5.com 满分网的值(用含k的式子表示).
manfen5.com 满分网
查看答案
如图,一次函数y1=k1x+2与反比例函数manfen5.com 满分网的图象交于点A(4,m)和B(-8,-2),与y轴交于点C.
(1)k1=______,k2=______
(2)根据函数图象可知,当y1>y2时,x的取值范围是______
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
查看答案
为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀“、“合格“和“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.
(1)甲、乙两种品牌食用油各被抽取了多少瓶用于检测?
(2)在该超购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?

manfen5.com 满分网 查看答案
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-2,-3和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=-x-2上的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.