满分5 > 初中数学试题 >

如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4) (1)求这条...

manfen5.com 满分网如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式;
(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0<m<manfen5.com 满分网+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示);
(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.
(1)利用待定系数法,将A,B的坐标代入解析式即可求得二次函数的解析式; (2)因为点B是y=x与y=x2-2x-4的交点,根据题意可求得N,M的坐标,则可表示出MN的长,通过纵坐标的绝对值的和求得; (3)把△BOM分成两个△OMN与△BMN,把MN作为两个三角形的底,通过点B,P的纵坐标表示出两个三角形的高即可求得三角形的面积. 【解析】 (1)由题意把点(1,-5)、(-2,4)代入y=x2+bx+c得: , 解得b=-2,c=-4,(3分) ∴此抛物线解析式为:y=x2-2x-4; (2)由题意得:, ∴x2-3x-4=0, 解得:x=4或x=-1(舍), ∴点B的坐标为(4,4), 将x=m代入y=x条件得y=m, ∴点N的坐标为(m,m), 同理点M的坐标为(m,m2-2m-4),点P的坐标为(m,0), ∴PN=|m|,MP=|m2-2m-4|, ∵0<m<+1, ∴MN=PN+MP=-m2+3m+4; (3)作BC⊥MN于点C, 则BC=4-m,OP=m, S=MN•OP+MN•BC, =2(-m2+3m+4), =-2(m-)2+12,(11分) ∵-2<0, ∴当m-=0,则m=时,S有最大值.
复制答案
考点分析:
相关试题推荐
如图,AB为⊙O的直径,OE交弦AC于点P,交manfen5.com 满分网于点M,且manfen5.com 满分网=manfen5.com 满分网
(1)求证:OP=manfen5.com 满分网BC;
(2)如果AE2=EP•EO,且AE=manfen5.com 满分网,BC=6,求⊙O的半径.

manfen5.com 满分网 查看答案
“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.
(1)该经销商先捐款______元,后捐款______元;(用含x的式子表示)
(2)写出y与x的函数关系式,并求出自变量x的取值范围;
(3)该经销商两次至少共捐助多少元?
查看答案
在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.
查看答案
如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D、B、C在同一水平地面上.
(1)改善后滑滑板会加长多少米?
(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.
(参考数据:manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,以上结果均保留到小数点后两位)

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,E为CD中点,连接AE并延长AE交BC的延长线于点F
(1)求证:CF=AD;
(2)若AD=2,AB=8,当BC为多少时,点B在线段AF的垂直平分线上,为什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.