某厂家新开发的一种摩托车如图所示,它的大灯A射出的光线AB、AC与地面MN的夹角分别为8°和10°,大灯A离地面距离1 m.
(1)该车大灯照亮地面的宽度BC约是多少(不考虑其它因素)?
(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2 s,从发现危险到摩托车完全停下所行驶的距离叫做最小安全距离,某人以60 km/h的速度驾驶该车,从60 km/h到摩托车停止的刹车距离是
m,请判断该车大灯的设计是否能满足最小安全距离的要求,请说明理由.
(参考数据:
,
,
,
)
考点分析:
相关试题推荐
如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=
的一个分支上,
(1)求双曲线的解析式.
(2)过C点的直线y=-x+b与双曲线的另一个交点为E,求E点的坐标和△EOC的面积.
查看答案
某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图1和图2.
(1)第四个月销量占总销量的百分比是______;
(2)在图2中补全表示B品牌电视机月销量的折线;
(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率;
(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
查看答案
已知:如图,AB是⊙O的直径,C、D为⊙O上两点,CF⊥AB于点F,CE⊥AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)若AD=CD=6,求四边形ABCD的面积.
查看答案
某超市将某品牌书包的售价从原来80元/个经两次调价后调至64.8元/个.
(1)若该超市两次调价的降价率相同,求这个降价率.
(2)经调查,该书包每降价4元,即可多销售5个,若该超市原来每月可销售书包120个,那么两次调价后,每月可销售这种品牌的书包多少个?
查看答案
如图,已知E、F分别为矩形ABCD的边BA、DC的延长线上的点,且AE=
AB,CF=
CD,连接EF分别交AD、BC于点G、H.请你找出图中与DG相等的线段,并加以证明.
查看答案