满分5 > 初中数学试题 >

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(...

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

manfen5.com 满分网
(1)根据抛物线的对称轴可求出B点的坐标,进而可用待定系数法求出抛物线的解析式; (2)由于A、B关于抛物线的对称轴直线对称,若连接BC,那么BC与直线x=1的交点即为所求的点M;可先求出直线BC的解析式,联立抛物线对称轴方程即可求得M点的坐标; (3)若∠PCB=90°,根据△BCO为等腰直角三角形,可推出△CDP为等腰直角三角形,根据线段长度求P点坐标. 【解析】 (1)∵抛物线的对称轴为x=1,且A(-1,0), ∴B(3,0); 可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3), 则有:a(0+1)(0-3)=-3,a=1; ∴y=(x+1)(x-3)=x2-2x-3; (2)由于A、B关于抛物线的对称轴直线x=1对称, 那么M点为直线BC与x=1的交点; 由于直线BC经过C(0,-3),可设其解析式为y=kx-3, 则有:3k-3=0,k=1; ∴直线BC的解析式为y=x-3; 当x=1时,y=x-3=-2, 即M(1,-2); (3)设经过C点且与直线BC垂直的直线为直线l,作PD⊥y轴,垂足为D; ∵OB=OC=3, ∴CD=DP=1,OD=OC+CD=4, ∴P(1,-4).
复制答案
考点分析:
相关试题推荐
在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=manfen5.com 满分网∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;
(2)通过观察、测量、猜想:manfen5.com 满分网=______,并结合图2证明你的猜想;
(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求manfen5.com 满分网的值.(用含α的式子表示)
manfen5.com 满分网
查看答案
已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数manfen5.com 满分网的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=manfen5.com 满分网
(1)求该反比例函数和一次函数的解析式;
(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.

manfen5.com 满分网 查看答案
如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.
(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO,求BD的长.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
查看答案
某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.