满分5 > 初中数学试题 >

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴...

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得以B,O,D为顶点的三角形与△BAC相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;
(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角∠PCO与∠ACO的大小(不必证明),并写出此时点P的横坐标xp的取值范围.

manfen5.com 满分网
(1)已知了抛物线的顶点横坐标为1,即x=-=1,将已知的两点坐标代入抛物线中,联立三式即可求出抛物线的解析式. (2)本题要分两种情况讨论:△BOD∽△BAC或△BDO∽△BAC,解题思路都是通过相似三角形得出的关于BD、BC、BO、BA的比例关系式求出BD的长,然后根据∠OBC=45°的特殊条件用BD的长求出D点的坐标. (3)本题求解的关键是找出几个特殊位置. ①由于∠PCO是锐角,因此要先找出∠PCO是直角时的值,以此来确定P的大致取值范围.去C关于抛物线对称轴的对称点C′(2,3),那么当P、C′重合时,∠PCO=90°,因此∠PCO若为锐角,则P点的横坐标必大于2. ②当∠PCO=∠ACO时,根据A点的坐标和抛物线对称轴的解析式可知:∠ACO=∠ECO,因此直线CE与抛物线的交点(除C外)就是此时P点的位置.据此可求出此时P点的横坐标. 根据上面两种情况进行判定即可. 【解析】 (1)∵二次函数图象顶点的横坐标为1,且过点(2,3)和(-3,-12), ∴由 解得. ∴此二次函数的表达式为y=-x2+2x+3. (2)假设存在直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),使得以B,O,D为顶点的三角形与△BAC相似. 在y=-x2+2x+3中,令y=0,则由-x2+2x+3=0, 解得x1=-1,x2=3. ∴A(-1,0),B(3,0). 令x=0,得y=3. ∴C(0,3). 设过点O的直线l交BC于点D,过点D作DE⊥x轴于点E. ∵点B的坐标为(3,0),点C的坐标为(0,3),点A的坐标为(-1,0). ∴|AB|=4,|OB|=|OC|=3,∠OBC=45°. ∴|BC|==3. 要使△BOD∽△BAC或△BDO∽△BAC, 已有∠B=∠B,则只需,①或②成立. 若是①,则有|BD|===. 而∠OBC=45°, ∴|BE|=|DE|. ∴在Rt△BDE中,由勾股定理, 得|BE|2+|DE|2=2|BE|2=|BD|2=()2. 解得|BE|=|DE|=(负值舍去). ∴|OE|=|OB|-|BE|=3-=. ∴点D的坐标为(,). 将点D的坐标代入y=kx(k≠0)中,求得k=3. ∴满足条件的直线l的函数表达式为y=3x. 或求出直线AC的函数表达式为y=3x+3,则与直线AC平行的直线l的函数表达式为y=3x. 此时易知△BOD∽△BAC,再求出直线BC的函数表达式为y=-x+3.联立y=3x,y=-x+3求得点D的坐标为(,). 若是②,则有|BD|===2. 而∠OBC=45°, ∴|BE|=|DE|. ∴在Rt△BDE中,由勾股定理, 得|BE|2+|DE|2=2|BE|2=|BD|2=(2)2. 解得|BE|=|DE|=2(负值舍去). ∴|OE|=|OB|-|BE|=3-2=1. ∴点D的坐标为(1,2). 将点D的坐标代入y=kx(k≠0)中,求得k=2. ∴满足条件的直线l的函数表达式为y=2x. ∴存在直线l:y=3x或y=2x与线段BC交于点D(不与点B,C重合), 使得以B,O,D为顶点的三角形与△BAC相似,且点D的坐标分别为(,)或(1,2). (3)设过点C(0,3),E(1,0)的直线y=kx+3(k≠0)与该二次函数的图象交于点P. 将点E(1,0)的坐标代入y=kx+3中, 求得k=-3. ∴此直线的函数表达式为y=-3x+3. 设点P的坐标为(x,-3x+3), 并代入y=-x2+2x+3,得x2-5x=0. 解得x1=5,x2=0(不合题意,舍去). ∴x=5,y=-12. ∴点P的坐标为(5,-12). 此时,锐角∠PCO=∠ACO. 又∵二次函数的对称轴为x=1, ∴点C关于对称轴对称的点C'的坐标为(2,3). ∴当xp>5时,锐角∠PCO<∠ACO; 当xp=5时,锐角∠PCO=∠ACO; 当2<xp<5时,锐角∠PCO>∠ACO.
复制答案
考点分析:
相关试题推荐
正方形OCED与扇形OAB有公共顶点0,分别以OA,0B所在直线为x轴,y轴建立平面直角坐标系.如图所示.正方形两个顶点C、D分别在x轴、y轴正半轴上移动.设OC=x,OA=3
(1)当x=1时,正方形与扇形不重合的面积是______;此时直线CD对应的函数关系式是______
(2)当直线CD与扇形OAB相切时.求直线CD对应的函数关系式;
(3)当正方形有顶点恰好落在manfen5.com 满分网上时,求正方形与扇形不重合的面积.

manfen5.com 满分网 查看答案
点D是⊙O的直径CA延长线上一点,点B在⊙O上,BD是⊙O的切线,且AB=AD.
(1)求证:点A是DO的中点.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=manfen5.com 满分网,求△ACF的面积.

manfen5.com 满分网 查看答案
如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)
manfen5.com 满分网
(1)问:始终与△AGC相似的三角形有____________
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形.
查看答案
如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
市政公司为绿化一段沿江风光带,计划购买甲、乙两种树苗共500株,甲种树苗每株50元,乙种树苗每株80元.有关统计表明:甲、乙两种树苗的成活率分别为90%和95%.
(1)若购买树苗共用了28000元,求甲、乙两种树苗各多少株?
(2)若购买树苗的钱不超过34 000元,应如何选购树苗?
(3)若希望这批树苗的成活率不低于92%,且购买树苗的费用最低,应如何选购树苗?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.