根据题意画出相应的图形,由三角形ABC的三边,利用勾股定理的逆定理得出∠ACB=90°,根据垂直定义得到AC与BC垂直,再利用切线的定义:过半径外端点且与半径垂直的直线为圆的切线,得到AC为圆B的切线,可得出此时铁环所在的圆与手柄所在的直线的位置关系为相切.
【解析】
根据题意画出图形,如图所示:
由已知得:BC=30cm,AC=40cm,AB=50cm,
∵BC2+AC2=302+402=900+1600=2500,AB2=502=2500,
∴BC2+AC2=AB2,
∴∠ACB=90°,即AC⊥BC,
∴AC为圆B的切线,
则此时铁环所在的圆与手柄所在的直线的位置关系为相切.
故选C.