满分5 > 初中数学试题 >

某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加...

某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.
甲说:将毛竹全部进行粗加工后销售;
乙说:30天都进行精加工,未加工的毛竹直接销售;
丙说:30天中可用几天粗加工,再用几天精加工后销售;
请问厂长应采用哪位说的方案做,获利最大?
(1)若将毛竹全部进行粗加工后销售,则获利为93×800元; (2)30天都进行精加工,则可加工30吨,可获利30×4000,未加工的毛竹63吨直接销售可获利63×100,因此共获利30×4000+63×100; (3)30天中可用几天粗加工,再用几天精加工后销售,则可根据“时间30天”,“共93吨”列方程组进行解答. 【解析】 (1)若将毛竹全部进行粗加工后销售,则可以获利93×800=74 400元; (2)30天都进行精加工,可加工数量为30吨,此时获利30×4000=120 000元, 未加工的毛竹63吨直接销售可获利63×100=6300元, 因此共获利30×4000+63×100=126300元; (3)设x天粗加工,y天精加工,则 解之得 所以9天粗加工数量为9×8=72吨,可获利72×800=57 600元, 21天精加工数量为21吨可获利21×4000=84 000, 因此共获利141 600 所以(3)>(2)>(1) 即第三种方案获利最大.
复制答案
考点分析:
相关试题推荐
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.
请你从这四个条件中选出三个作为题设,另一个作为结论,
组成一个真命题,并给予证明.
题设:______;结论:______.(均填写序号)
证明:

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x是不等式组manfen5.com 满分网的整数解.
查看答案
计算:(π-3)+manfen5.com 满分网-2sin45°-(manfen5.com 满分网-1
查看答案
如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n层图需要    个三角形.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.