满分5 > 初中数学试题 >

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左...

己知:二次函数y=ax2+bx+6(a≠0)与x轴交于A、B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由.
(4)如图2,连接AC、BC,点Q是线段0B上一个动点(点Q不与点0、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.
manfen5.com 满分网
(1)解一元二次方程x2-4x-12=0可求A、B两点坐标; (2)将A、B两点坐标代入二次函数y=ax2+bx+6,可求二次函数解析式,配方为顶点式,可求对称轴及顶点坐标; (3)作点C关于抛物线对称轴的对称点C′,连接AC′,交抛物线对称轴于P点,连接CP,P点即为所求; (4)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面积,利用三角形面积公式表示△ACQ的面积,根据S△CDQ=S△ABC-S△BDQ-S△ACQ,运用二次函数的性质求面积最大时,m的值. 【解析】 (1)A(-2,0),B(6,0); (2)将A、B两点坐标代入二次函数y=ax2+bx+6,得 , 解得, ∴y=-x2+2x+6, ∵y=-(x-2)2+8, ∴抛物线对称轴为x=2,顶点坐标为(2,8); (3)如图,作点C关于抛物线对称轴的对称点C′,连接AC′,交抛物线对称轴于P点,连接CP, ∵C(0,6), ∴C′(4,6),设直线AC′解析式为y=ax+b,则 , 解得, ∴y=x+2,当x=2时,y=4, 即P(2,4); (4)依题意,得AB=8,QB=6-m,AQ=m+2,OC=6,则S△ABC=AB×OC=24, ∵由DQ∥AC,∴△BDQ∽△BCA, ∴=()2=()2, 即S△BDQ=(m-6)2, 又S△ACQ=AQ×OC=3m+6, ∴S=S△ABC-S△BDQ-S△ACQ=24-(m-6)2-(3m+6)=-m2+m+=-(m-2)2+6, ∴当m=2时,S最大.
复制答案
考点分析:
相关试题推荐
如图,矩形ABCD中,点E为矩形的边CD上任意一点,点P为线段AE中点,连接BP并延长交边AD于点F,点M为边CD上一点,连接FM,且∠1=∠2.
(1)若AD=2,DE=1,求AP的长;
(2)求证:PB=PF+FM.

manfen5.com 满分网 查看答案
西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下不完整的统计图,请你根据统计图解答下列问题:
manfen5.com 满分网
(1)本次调查中,张老师一共调查了______名同学;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调查的A类和D类学生分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.
查看答案
随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资.尹进2008年的月工资为2000元,在2010年时他的月工资增加到2420元,他2011年的月工资按2008到2010年的月工资的平均增长率继续增长.
(1)尹进2011年的月工资为多少?
(2)尹进看了甲、乙两种工具书的单价,认为用自己2011年6月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2011年6月份的月工资少了242元,于是他用这242元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.请问,尹进总共捐献了多少本工具书?
查看答案
先化简,再求值:manfen5.com 满分网,其中x满足2x2-2x-7=0.
查看答案
如图,方格纸中的每个小方格都是边长为1各单位的正方形,△ABC的定点均在个顶上,在建立平面直角坐标系后,点C的坐标为(4,1).
(1)作出△ABC关于y轴对称的△A1B1C1
(2)作出将△A1B1C1绕原点O旋转180°得到的△A2B2C2,并写出C2的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.