如图①,在长为6厘米,宽为3厘米的矩形PQMN中,有两张边长分别为二厘米和一厘米的正方形纸片ABCD和EFGH,且BC且在PQ上,PB=1厘米,PF=
厘米,从初始时刻开始,纸片ABCD沿PQ以2厘米每秒的速度向右平移,同时纸片EFGH沿PN以1厘米每秒的速度向上平移,当C点与Q点重合时,两张图片同时停止移动,设平移时间为t秒时,(如图②),纸片ABCD扫过的面积为S
1,纸片EFGH扫过的面积为S
2,AP,PG,GA所围成的图形面积为S(这里规定线段面积为零,扫过的面积含纸片面积).解答下列问题:
(1)当t=
时,PG=______
考点分析:
相关试题推荐
今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x | 1 | 2 | 3 | 4 |
价格y(元/kg) | 2 | 2.2 | 2.4 | 2.6 |
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-
x
2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:37
2=1369,38
2=1444,39
2=1521,40
2=1600,41
2=1681)
查看答案
在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A
1B
1C
1,使点C
l落在直线BC上(点C
l与点C不重合),
(1)如图,当∠C>60°时,写出边AB
l与边CB的位置关系,并加以证明;
(2)当∠C=60°时,写出边AB
l与边CB的位置关系(不要求证明);
(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB
1C
1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.
查看答案
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.
查看答案
如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.
(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;
(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.
查看答案
甲、乙两个班参加一次校级数学竞赛,两班参加人数相等.比赛结束后,依据两班学生成绩绘制了如下统计图表.
甲班成绩统计表
(1)经计算,乙班的平均成绩为7分,中位数为6分,请写出甲班的平均成绩、中位数,并分别从平均数和中位数的角度分析哪个班的成绩较好.
(2)经计算,甲班的方差为2.56,乙班的方差为______,比较可得:______班成绩较为整齐,(提示S
2=
[(x
1-
)
2+(x
2-
)
2+…+(x
n-
)
2])
(3)如果学校决定要组织4个人的代表队参加市级团体赛,为便于管理,决定仅从其中一个班中挑选参赛选手,你认为应选哪个班?请说明理由.
查看答案