满分5 > 初中数学试题 >

新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,...

新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A,B,C的横坐标分别为4,10,12.
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);
(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?

manfen5.com 满分网
(1)根据各段图象所过的特殊点易求其解析式,注意自变量的取值范围,综合起来得结论; (2)在各段中,s=yx-y(x-1); (3)根据函数性质分别求出各段中s的最大值比较后得结论. 【解析】 (1)设直线OA的解析式为y=kx, ∵点O(0,0),A(4,-40)在该直线上, ∴-40=4k, 解得k=-10, ∴y=-10x; ∵点B在抛物线y=-5x2+205x-1230上, 设B(10,m),则m=320. ∴点B的坐标为(10,320). ∵点A为抛物线的顶点, ∴设曲线AB所在的抛物线的解析式为y=a(x-4)2-40, ∴320=a(10-4)2-40, 解得a=10, 即y=10(x-4)2-40=10x2-80x+120. ∴y=; (2)利用第x+1个月的利润应该是前x+1个月的利润之和减去前x个月的利润之和: , 即S=; (3)由(2)知当x=1,2,3,4时,s的值均为-10, 当x=5,6,7,8,9时,s=20x-70, 即当x=9时s有最大值110, 而在x=10,11,12时,s=-10x+200, 当x=10时,s有最大值100, 因此第9月公司所获利润最大,它是110万元.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.
(1)求抛物线的表达式;
(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;
(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.
查看答案
如图,已知正方形ABCD的边长与Rt△PQR的直角边PQ的长均为4cm,QR=8cm,AB与QR在同一条直线l上.开始时点Q与点B重合,让△PQR以1cm/s速度在直线l上运动,直至点R与点A重合为止,ts时△PQR与正方形ABCD重叠部分的面积记为Scm2
(1)当t=3s时,求S的值;
(2)求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)写出t为何值时,重叠部分的面积S有最大值,最大值是多少?

manfen5.com 满分网 查看答案
已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C.其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA<OC)是方程x2-5x+4=0的两个根,且抛物线的对称轴是直线x=1.
(1)求A、B、C三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连接CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.
(1)求证:AC是⊙O的切线;
(2)若OA=10,AD=16,求AC的长.

manfen5.com 满分网 查看答案
如图,已知:在⊙O中,直径AB=4,点E是OA上任意一点,过E作弦CD⊥AB,点F是manfen5.com 满分网上一点,连接AF交CE于H,连接AC、CF、BD、OD.
(1)求证:△ACH∽△AFC;
(2)猜想:AH•AF与AE•AB的数量关系,并说明你的猜想;
(3)探究:当点E位于何处时,S△AEC:S△BOD=1:4,并加以说明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.