满分5 > 初中数学试题 >

一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点...

manfen5.com 满分网一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点;
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
(1)由题点是未知的,因为抛物线与x轴交于A(m-2,0),B(m+2,0),可以把抛物线设为两点式,根据AC⊥BC的关系解出C点坐标从而得到抛物线解析式; (2)用图象平移,m为小于零的常数,只需将抛物线向右平移|m|个单位,再向上平移2个单位就可以了; (3)假设存在,求出△BOD三个顶点坐标,则有两边相等,从而解出m. 【解析】 (1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)2-4a.(2分) ∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4, ∴C(m,-2)代入得a=. ∴解析式为:y=(x-m)2-2.(5分) (亦可求C点,设顶点式) (2)∵m为小于零的常数, ∴只需将抛物线向右平移|m|个单位,再向上平移2个单位,可以使抛物线y=(x-m)2-2顶点在坐标原点.(7分) (3)由(1)得D(0,m2-2),设存在实数m,使得△BOD等腰三角形. ∵△BOD为直角三角形, ∴只能OD=OB.(9分) m2-2=|m+2|,当m+2>0时,解得m=4或m=-2(舍). 当m+2<0时,解得m=0或m=-2(舍); ∵m=0时,D点坐标为(0,-2),在y轴的负半轴, ∴m=0舍去; m=2,D点坐标为(0,0),也不合题意舍去; 当m+2=0时,即m=-2时,B、O、D三点重合(不合题意,舍) 综上所述:存在实数m=4,使得△BOD为等腰三角形.(12分)
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;
(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.

manfen5.com 满分网 查看答案
新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点A,B,C的横坐标分别为4,10,12.
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);
(3)前12个月中,第几个月该公司所获得的利润最多,最多利润是多少万元?

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.
(1)求抛物线的表达式;
(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;
(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.
查看答案
如图,已知正方形ABCD的边长与Rt△PQR的直角边PQ的长均为4cm,QR=8cm,AB与QR在同一条直线l上.开始时点Q与点B重合,让△PQR以1cm/s速度在直线l上运动,直至点R与点A重合为止,ts时△PQR与正方形ABCD重叠部分的面积记为Scm2
(1)当t=3s时,求S的值;
(2)求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)写出t为何值时,重叠部分的面积S有最大值,最大值是多少?

manfen5.com 满分网 查看答案
已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C.其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA<OC)是方程x2-5x+4=0的两个根,且抛物线的对称轴是直线x=1.
(1)求A、B、C三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连接CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.