满分5 > 初中数学试题 >

已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠F...

已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;
(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.

manfen5.com 满分网
(1)要证FD是⊙O的切线只要证明∠OCF=90°即可; (2)根据已知证得△OEG∽△CBG根据相似比不难求得OC的长; (3)根据S阴影=S△OCD-S扇形OBC从而求得阴影的面积. 证明:(1)连接OC(如图①), ∵OA=OC, ∴∠1=∠A. ∵OE⊥AC, ∴∠A+∠AOE=90°. ∴∠1+∠AOE=90°. ∵∠FCA=∠AOE, ∴∠1+∠FCA=90°. 即∠OCF=90°. ∴FD是⊙O的切线. (2)连接BC,(如图②) ∵OE⊥AC, ∴AE=EC(垂径定理). 又∵AO=OB, ∴OE∥BC且. ∴∠OEG=∠GBC(两直线平行,内错角相等), ∠EOG=∠GCB(两直线平行,内错角相等), ∴△OEG∽△CBG(AA). ∴. ∵OG=2, ∴CG=4. ∴OC=OG+GC=2+4=6. 即⊙O半径是6. (3)∵OE=3,由(2)知BC=2OE=6, ∵OB=OC=6, ∴△OBC是等边三角形. ∴∠COB=60°. ∵在Rt△OCD中,CD=OC•tan60°=6, ∴S阴影=S△OCD-S扇形OBC==.
复制答案
考点分析:
相关试题推荐
如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.
(1)问:B处是否会受到台风的影响?请说明理由.
(2)为避免受到台风的影响,该船应在多少小时内卸完货物?
(供选用数据:manfen5.com 满分网≈1.4,manfen5.com 满分网≈1.7)

manfen5.com 满分网 查看答案
某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
查看答案
先化简,后求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:
①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.
其中正确的结论的序号是    (把所有正确结论的序号都填在横线上).
manfen5.com 满分网 查看答案
将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成manfen5.com 满分网,定义manfen5.com 满分网=ad-bc,上述记号就叫做2阶行列式.若manfen5.com 满分网,则x=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.