如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?
考点分析:
相关试题推荐
如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE、AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积.
查看答案
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨.
(1)设A地到甲地运送蔬菜x吨,请完成下表:
| 运往甲地(单位:吨) | 运往乙地(单位:吨) |
A | x | ______ |
B | ______ | ______ |
(2)设总运费为W元,请写出W与x的函数关系式.
(3)怎样调运蔬菜才能使运费最少?
查看答案
已知:在⊙O中,AB是直径,AC是弦,OE⊥AC于点E,过点C作直线FC,使∠FCA=∠AOE,交AB的延长线于点D.
(1)求证:FD是⊙O的切线;
(2)设OC与BE相交于点G,若OG=2,求⊙O半径的长;
(3)在(2)的条件下,当OE=3时,求图中阴影部分的面积.
查看答案
如图,某货船以20海里/时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时,接到气象部门通知,一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响.
(1)问:B处是否会受到台风的影响?请说明理由.
(2)为避免受到台风的影响,该船应在多少小时内卸完货物?
(供选用数据:
≈1.4,
≈1.7)
查看答案
某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
查看答案