如图,已知直线y=-x+5与y轴、x轴分别相交于A、B两点,抛物线y=-x
2+bx+c经过A、B两点.
(1)求A、B两点的坐标,并求抛物线的解析式;
(2)若点P以1个单位/秒的速度从点B沿x轴向点O运动.过点P作y轴的平行线交直线AB于点M,交抛物线于点N.
①设点P运动的时间为t,点P在运动过程中,若以MN为直径的圆与y轴相切,试求出此时t的值;
②是否存在这样的t值,使得CN=DM?若能,求出t的值;若不能,请说明理由.
考点分析:
相关试题推荐
如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB,延长AB交DC于点E.
(1)求证:直线DE与⊙O相切;
(2)求证:AC
2=AD•AB;
(3)若AC=2
,AB-AD=2,求sin∠BCE的值.
查看答案
枣阳素以“桃子之乡”著称,某乡组织20辆汽车装运42吨桃子到外地销售,按规定每辆车只能装同一种桃子,且必须装满,每种桃子不少于两车,每车的吨数及利润如表所示:
桃子品种 | A | B | C |
每吨获利(百元) | 6 | 8 | 2 |
每辆车装载量(吨) | 2.2 | 2.1 | 2 |
(1)设用x辆车装A种桃子,用y辆装B种桃子,用z辆车装C种桃子,求y与x、z与x之间的函数关系及自变量x的取值范围; (2)设此次外售活动的利润为w(百元),求w与x的函数关系式以及最大利润,并安排相应的车辆分配方案.
查看答案
如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
查看答案
如图,直线y=kx+k(k≠0)与双曲线y=
在第一象限内相交于点M,与x轴交于点A.
(1)求m的取值范围和点A的坐标;
(2)若点B的坐标为(3,0),AM=5,S
△ABM=8,求双曲线的函数表达式.
查看答案
甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选出2名同学打第一场比赛,求下列事件的概率:
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;
(2)随机选取2名同学,其中有乙同学.
查看答案