满分5 > 初中数学试题 >

有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AM...

有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30度.
(1)试探究线段BD与线段MF的关系,并简要说明理由;
(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,请直接写出旋转角β的度数;
(3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?
manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),得BD=MF,△BAD≌△MAF,推出BD=MF,∠ADB=∠AFM=30°,进而可得∠DNM的大小. (2)根据旋转的性质得出结论. (3)求平移的距离是A2A的长度.在矩形PNA2A中,A2A=PN,只要求出PN的长度就行.用△DPN∽△DAB得出:,解得A2A的大小. 【解析】 (1)BD=MF,BD⊥MF.(1分) 延长FM交BD于点N, 由题意得:△BAD≌△MAF. ∴BD=MF,∠ADB=∠AFM.(2分) 又∵∠DMN=∠AMF, ∴∠ADB+∠DMN=∠AFM+∠AMF=90°, ∴∠DNM=90°,∴BD⊥MF.(3分) (2)当AK=FK时,∠KAF=∠F=30°, 则∠BAB1=180°-∠B1AD1-∠KAF=180°-90°-30°=60°, 即β=60°; ②当AF=FK时,∠FAK==75°, ∴∠BAB1=90°-∠FAK=15°, 即β=15°; ∴β的度数为60°或15°(答对一个得2分)(7分) (3)由题意得矩形PNA2A.设A2A=x,则PN=x(如图3), 在Rt△A2M2F2中,∵F2M2=FM=8, ∴A2M2=4,A2F2=4,∴AF2=4-x. ∵∠PAF2=90°,∠PF2A=30°, ∴AP=AF2•tan30°=4-x. ∴PD=AD-AP=4-4+x. ∵NP∥AB,∴∠DNP=∠B. ∵∠D=∠D,∴△DPN∽△DAB.(9分) ∴.(10分) ∴,解得x=6-2.(11分) 即A2A=6-2. 答:平移的距离是(6-2)cm.(12分)
复制答案
考点分析:
相关试题推荐
已知关于x的方程x2-2(k-3)x+k2-4k-1=0的两实数根分别为x1,x2
(1)求k的取值范围;
(2)若这个方程有一个根为1,求k的值;
(3)若点A(x1,x2)在反比例函数manfen5.com 满分网的图象上,求满足条件的k的值.
查看答案
如图,在△ABC中,AB=AC,以AB为直径的半圆O交BC于点D,DE⊥AC,垂足为E.
(1)判断DE与⊙O的位置关系,并证明你的结论;
(2)如果⊙O的直径为9,cosB=manfen5.com 满分网,求DE的长.

manfen5.com 满分网 查看答案
某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的manfen5.com 满分网倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
查看答案
在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
manfen5.com 满分网manfen5.com 满分网
(1)图1中“统计与概率”所在扇形的圆心角为______度;
(2)图2、3中的a=______,b=______
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
查看答案
如图,在△ABC中,AB=AC,∠A=40°.
(1)用直尺和圆规作AB的垂直平分线DE交AC于点E,垂足为D(保留作图痕迹,不要求写作法);
(2)连结BE,求∠EBC的度数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.