满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,...

如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴、y轴的正半轴上,且满足manfen5.com 满分网+|OA-1|=0.
(1)求点A、点B的坐标;
(2)若点P从C点出发,以每秒1个单位的速度沿线段CB由C向B运动,连接AP,设△ABP的面积为S,点P的运动时间为t秒,求S与t的函数关系式;
(3)在(2)的条件下,是否存在点P,使以点A,B,P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据足+|OA-1|=0.可求得OB=,OA=1,根据图象可知A(1,0),B(0,). (2)在直角三角形中的勾股定理和动点运动的时间和速度分别把相关的线段表示出来,设CP=t,过P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=.S=S△ABC-S△APC=2-t. (3)直接先根据相似存在分别计算对应的p点坐标,可知满足条件的有两个.P1(-3,0),P2(-1,). 【解析】 (1)∵+|OA-1|=0, ∴OB2-3=0,OA-1=0. ∴OB=,OA=1.(1分) 点A,点B分别在x轴,y轴的正半轴上, ∴A(1,0),B(0,).(2分) (2)由(1),得AC=4,,, ∴AB2+BC2=22+(2)2=16=AC2. ∴△ABC为直角三角形,∠ABC=90°.(4分) 设CP=t,过P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ=, ∴S=S△ABC-S△APC==-t(0≤t<).(7分) (说明:不写t的范围不扣分) (3)存在,满足条件的有两个. P1(-3,0),(8分) P2(-1,).(10分)
复制答案
考点分析:
相关试题推荐
近期,海峡两岸关系的气氛大为改善.大陆相关部门于2005年8月1日起对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
每千克售价(元)3837363520
每天销量(千克)5052545686
设当单价从38元/千克下调了x元时,销售量为y千克;
(1)写出y与x间的函数关系式;
(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,问这天的销售利润是多少?
(3)目前两岸还未直接通航,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,问一次进货最多只能是多少千克?
查看答案
manfen5.com 满分网在某张航海图上,标明了三个观测点的坐标为O(0,0)、B(12,0)、C(12,16),由三个观测点确定的圆形区域是海洋生物保护区,如图所示.
(1)求圆形区域的面积(π取3.14);
(2)某时刻海面上出现一渔船A,在观测点O测得A位于北偏东45°方向上,同时在观测点B测得A位于北偏东30°方向上,求观测点B到渔船A的距离(结果保留三个有效数字);
(3)当渔船A由(2)中的位置向正西方向航行时,是否会进入海洋生物保护区?请通过计算解释.
查看答案
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.

manfen5.com 满分网 查看答案
《中学生体质健康标准》规定学生体质健康等级标准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.
manfen5.com 满分网
(1)在抽取的学生中不及格人数所占的百分比是______%;
(2)小明按以下方法计算出抽取的学生平均得分是:(90+78+66+42)÷4=69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式;(不必算出结果)
(3)若不及格学生的总分恰好等于某一个良好等级学生的分数,请估算出该校九年级学生中优秀等级的人数.
查看答案
已知x1,x2是方程x2+3x+1=0的两实数根,则manfen5.com 满分网的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.