在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.根据图象信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
考点分析:
相关试题推荐
阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=
,BC=
;
小明同学的做法是:由勾股定理,得AB=AC=
,BC=
,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A′B′C′(A′点位置如图所示),使A′B′=A′C′=5,B′C′=
.(直接画出图形,不写过程);
(2)观察△ABC与△A′B′C′的形状,猜想∠BAC与∠B′A′C′有怎样的数量关系,并证明你的猜想.
查看答案
如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)
查看答案
(1)先化简,再求值:(2a+b)(2a-b)+b(2a+b)-4a
2b÷b,其中a=-
,b=2
(2)解不等式组
.
查看答案
如图,梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA,AB,BC为边向梯形外作正方形,其面积分别为S
1,S
2,S
3,则S
1,S
2,S
3之间的关系是
.
查看答案
已知正比例函数y=kx(k≠0)的图象经过原点、第二象限与第四象限,请写出符合上述条件的k的一个值:
.
查看答案