满分5 > 初中数学试题 >

如图,抛物线y=ax2-2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,...

manfen5.com 满分网如图,抛物线y=ax2-2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
(1)将A(3,0),C(0,4)代入y=ax2-2ax+c,运用待定系数法即可求出抛物线的解析式; (2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,进而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长; (3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状. 【解析】 (1)∵抛物线y=ax2-2ax+c(a≠0)经过点A(3,0),点C(0,4), ∴,解得, ∴抛物线的解析式为y=-x2+x+4; (2)设直线AC的解析式为y=kx+b, ∵A(3,0),点C(0,4), ∴,解得, ∴直线AC的解析式为y=-x+4. ∵点M的横坐标为m,点M在AC上, ∴M点的坐标为(m,-m+4), ∵点P的横坐标为m,点P在抛物线y=-x2+x+4上, ∴点P的坐标为(m,-m2+m+4), ∴PM=PE-ME=(-m2+m+4)-(-m+4)=-m2+4m, 即PM=-m2+4m(0<m<3); (3)在(2)的条件下,连结PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下: 由题意,可得AE=3-m,EM=-m+4,CF=m,PF=-m2+m+4-4=-m2+m. 若以P、C、F为顶点的三角形和△AEM相似,分两种情况: ①若△PFC∽△AEM,则PF:AE=FC:EM, 即(-m2+m):(3-m)=m:(-m+4), ∵m≠0且m≠3, ∴m=. ∵△PFC∽△AEM,∴∠PCF=∠AME, ∵∠AME=∠CMF,∴∠PCF=∠CMF. 在直角△CMF中,∵∠CMF+∠MCF=90°, ∴∠PCF+∠MCF=90°,即∠PCM=90°, ∴△PCM为直角三角形; ②若△CFP∽△AEM,则CF:AE=PF:EM, 即m:(3-m)=(-m2+m):(-m+4), ∵m≠0且m≠3, ∴m=1. ∵△CFP∽△AEM,∴∠CPF=∠AME, ∵∠AME=∠CMF,∴∠CPF=∠CMF. ∴CP=CM, ∴△PCM为等腰三角形. 综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在同一平面直角坐标系中有5个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3).
(1)画出△ABC的外接圆⊙P,并指出点D与⊙P的位置关系;
(2)若直线l经过点D(-2,-2),E(0,-3),判断直线l与⊙P的位置关系.
查看答案
manfen5.com 满分网如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为    查看答案
已知(2x-21)(3x-7)-(3x-7)(x-13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=    查看答案
manfen5.com 满分网小亮和小红在公园放风筝,不小心让风筝挂在树梢上,风筝固定在A处(如图),为测量此时风筝的高度,他俩按如下步骤操作:
第一步:小亮在测点D处用测角仪测得仰角∠ACE=β.
第二步:小红量得测点D处到树底部B的水平距离BD=a.
第三步:量出测角仪的高度CD=b.
之后,他俩又将每个步骤都测量了三次,把三次测得的数据绘制成如下的条形统计图和折线统计图.
manfen5.com 满分网
请你根据两个统计图提供的信息解答下列问题.
(1)把统计图中的相关数据填入相应的表格中:
abβ
第一次__________________
第二次__________________
第三次__________________
平均值__________________
(2)根据表中得到的样本平均值计算出风筝的高度AB(参考数据:manfen5.com 满分网manfen5.com 满分网,结果保留3个有效数字).
查看答案
先阅读以下材料,然后解答问题:
材料:将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).
【解析】
在抛物线y=-x2+2x+3图象上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到A′(-1,3),再向下平移2个单位得到A″(-1,1);点B向左平移1个单位得到B′(0,4),再向下平移2个单位得到B″(0,2).
设平移后的抛物线的解析式为y=-x2+bx+c.则点A″(-1,1),B″(0,2)在抛物线上.可得:manfen5.com 满分网,解得:manfen5.com 满分网.所以平移后的抛物线的解析式为:y=-x2+2.
根据以上信息解答下列问题:
将直线y=2x-3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.