满分5 > 初中数学试题 >

如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF...

manfen5.com 满分网如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=manfen5.com 满分网CE时,EP+BP=   
延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可. 【解析】 如图,延长BQ交射线EF于M, ∵E、F分别是AB、AC的中点, ∴EF∥BC, ∴∠M=∠CBM, ∵BQ是∠CBP的平分线, ∴∠PBM=∠CBM, ∴∠M=∠PBM, ∴BP=PM, ∴EP+BP=EP+PM=EM, ∵CQ=CE, ∴EQ=2CQ, 由EF∥BC得,△MEQ∽△BCQ, ∴==2, ∴EM=2BC=2×6=12, 即EP+BP=12. 故答案为:12.
复制答案
考点分析:
相关试题推荐
如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为   
manfen5.com 满分网 查看答案
我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是    (写出1个即可). 查看答案
分解因式:3a2-12ab+12b2=    查看答案
在半径为5的圆中,30°的圆心角所对的弧长为    (结果保留π). 查看答案
明明同学在“百度”搜索引擎输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4680000,这个数用科学记数法表示为    查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.