满分5 > 初中数学试题 >

如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA...

如图,已知双曲线y=manfen5.com 满分网经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.

manfen5.com 满分网
(1)把点D的坐标代入双曲线解析式,进行计算即可得解; (2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答; (3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行. 【解析】 (1)∵双曲线y=经过点D(6,1), ∴=1, 解得k=6; (2)设点C到BD的距离为h, ∵点D的坐标为(6,1),DB⊥y轴, ∴BD=6, ∴S△BCD=×6•h=12, 解得h=4, ∵点C是双曲线第三象限上的动点,点D的纵坐标为1, ∴点C的纵坐标为1-4=-3, ∴=-3, 解得x=-2, ∴点C的坐标为(-2,-3), 设直线CD的解析式为y=kx+b, 则, 解得, 所以,直线CD的解析式为y=x-2; (3)AB∥CD. 理由如下:∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,),点D的坐标为(6,1), ∴点A、B的坐标分别为A(c,0),B(0,1), 设直线AB的解析式为y=mx+n, 则, 解得, 所以,直线AB的解析式为y=-x+1, 设直线CD的解析式为y=ex+f, 则, 解得, ∴直线CD的解析式为y=-x+, ∵AB、CD的解析式k都等于-, ∴AB与CD的位置关系是AB∥CD.
复制答案
考点分析:
相关试题推荐
为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)如果小明买了10个笔记本和6支钢笔,那么需要花多少元钱.
查看答案
2012年2月,国务院发布新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,环境检测中心今年在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:
类别组别PM2.5日平均浓度值(微克/立方米)频数频率
A115~3020.08
230~4530.12
B345~60ab
460~7550.20
C575~906c
D690~10540.16
           合计以上分组均含最小值,不含最大值251.00
根据图表中提供的信息解答下列问题:
(1)统计表中的a=______,b=______,c=______
(2)在扇形统计图中,A类所对应的圆心角是______度;
(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?

manfen5.com 满分网 查看答案
如图,已知E,F是四边形ABCD对角线AC上的两点,AE=CF,BE=FD,BE∥FD.
求证:四边形ABCD是平行四边形.

manfen5.com 满分网 查看答案
如图所示,当一热气球在点A处时,其探测器显示,从热气球看高楼顶部点B的仰角为45°,看高楼底部点C的俯角为60°,热气球与高楼的水平距离为60米,那么这栋楼高是多少米?(结果保留根号).

manfen5.com 满分网 查看答案
(1)manfen5.com 满分网-6cos45°-(manfen5.com 满分网-1)
(2)先化简,再求值:(a+b)(a-b)+b2,其中a=2,b=1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.