如图,抛物线y=ax
2+bx+2交x轴于A(-1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.
(1)求抛物线解析式及点D坐标;
(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;
(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.
查看答案
如图,已知双曲线y=
经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
查看答案
为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)如果小明买了10个笔记本和6支钢笔,那么需要花多少元钱.
查看答案
2012年2月,国务院发布新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,环境检测中心今年在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:
类别 | 组别 | PM2.5日平均浓度值(微克/立方米) | 频数 | 频率 |
A | 1 | 15~30 | 2 | 0.08 |
2 | 30~45 | 3 | 0.12 |
B | 3 | 45~60 | a | b |
4 | 60~75 | 5 | 0.20 |
C | 5 | 75~90 | 6 | c |
D | 6 | 90~105 | 4 | 0.16 |
合计 | 以上分组均含最小值,不含最大值 | 25 | 1.00 |
根据图表中提供的信息解答下列问题:
(1)统计表中的a=______,b=______,c=______;
(2)在扇形统计图中,A类所对应的圆心角是______度;
(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?
查看答案
如图,已知E,F是四边形ABCD对角线AC上的两点,AE=CF,BE=FD,BE∥FD.
求证:四边形ABCD是平行四边形.
查看答案