满分5 > 初中数学试题 >

在平面直角坐标系中,已知点P是反比例函数图象上一个动点,以P为圆心的圆始终与y轴...

在平面直角坐标系中,已知点P是反比例函数manfen5.com 满分网图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
manfen5.com 满分网
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由;
(2)如图2,⊙P运动到与x轴相交,设交点为B、C.当四边形ABCP是菱形时,求出点A、B、C的坐标.
(1)四边形OKPA是正方形.当⊙P分别与两坐标轴相切时,PA⊥y轴,PK⊥x轴,x轴⊥y轴,且PA=PK,可判断结论; (2)连接PB,设点P(x,),过点P作PG⊥BC于G,则半径PB=PC,由菱形的性质得PC=BC,可知△PBC为等边三角形,在Rt△PBG中,∠PBG=60°,PB=PA=x,PG=,利用sin∠PBG=,列方程求x即可. (1)四边形OKPA是正方形. 证明:∵⊙P分别与两坐标轴相切, ∴PA⊥OA,PK⊥OK, ∴∠PAO=∠OKP=90°, 又∵∠AOK=90°, ∴∠PAO=∠OKP=∠AOK=90°, ∴四边形OKPA是矩形, 又∵OA=OK, ∴四边形OKPA是正方形;  (2)【解析】 连接PB,设点P的横坐标为x,则其纵坐标为, 过点P作PG⊥BC于G, ∵四边形ABCP为菱形, ∴BC=PA=PB=PC(半径), ∴△PBC为等边三角形, 在Rt△PBG中,∠PBG=60°,PB=PA=x,PG=, sin∠PBG=,即=. 解得:x=±2(负值舍去), ∴PG=,PA=BC=2, 易知四边形OGPA是矩形,PA=OG=2,BG=CG=1, ∴OB=OG-BG=1,OC=OG+GC=3, ∴A(0,),B(1,0)C(3,0).
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另一点C(3,0).
(1)求抛物线的解析式;
(2)求抛物线的对称轴和顶点坐标.
查看答案
南宁市某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图.已经知A、B两组发言人数直方图高度比为1:5.
manfen5.com 满分网
请结合图中相关的数据回答下列问题:
(1)A组的人数是多少?本次调查的样本容量是多少?
(2)求出C组的人数并补全直方图.
(3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.
查看答案
宜城市某楼盘准备以每平方米4000元的均价对外销售,由于国务院“新国五条”出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
查看答案
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>.
(1)若小静转动转盘一次,求得到负数的概率;
(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.
manfen5.com 满分网
查看答案
manfen5.com 满分网某校数学兴趣小组要测量摩天轮的高度.如图,他们在C处测得摩天轮的最高点A的仰角为45°,再往摩天轮的方向前进50米至D处,测得最高点A的仰角为60°.则该兴趣小组测得的摩天轮的高度AB约是多少米?(结果精确到1米)
(参考数据:manfen5.com 满分网manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.