满分5 > 初中数学试题 >

如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度. (1)求∠APB...

如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30度.
(1)求∠APB的度数;
(2)当OA=3时,求AP的长.

manfen5.com 满分网
(1)方法1,根据四边形的内角和为360°,根据切线的性质可知:∠OAP=∠OBP=90°,求出∠AOB的度数,可将∠APB的度数求出;方法2,证明△ABP为等边三角形,从而可将∠APB的度数求出; (2)方法1,作辅助线,连接OP,在Rt△OAP中,利用三角函数,可将AP的长求出;方法2,作辅助线,过点O作OD⊥AB于点D,在Rt△OAD中,将AD的长求出,从而将AB的长求出,也即AP的长. 【解析】 (1)方法一: ∵在△ABO中,OA=OB,∠OAB=30°, ∴∠AOB=180°-2×30°=120°, ∵PA、PB是⊙O的切线, ∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°, ∴在四边形OAPB中, ∠APB=360°-120°-90°-90°=60°. 方法二: ∵PA、PB是⊙O的切线∴PA=PB,OA⊥PA; ∵∠OAB=30°,OA⊥PA, ∴∠BAP=90°-30°=60°, ∴△ABP是等边三角形, ∴∠APB=60°. (2)方法一:如图①,连接OP; ∵PA、PB是⊙O的切线, ∴PO平分∠APB,即∠APO=∠APB=30°, 又∵在Rt△OAP中,OA=3,∠APO=30°, ∴AP==3. 方法二:如图②,作OD⊥AB交AB于点D; ∵在△OAB中,OA=OB, ∴AD=AB; ∵在Rt△AOD中,OA=3,∠OAD=30°, ∴AD=OA•cos30°=, ∴AP=AB=.
复制答案
考点分析:
相关试题推荐
八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
查看答案
manfen5.com 满分网如图,图形中每一小格正方形的边长为1,已知△ABC.
(1)AC的长等于______
查看答案
今年初,山东省出台了一系列推进素质教育的新举措,提出了“三个还给”,即把时间还给学生,把健康还给学生,把能力还给学生.同学们利用课外活动时间积极参加体育锻炼,小东和小莉就本班同学“我最喜爱的体育项目”进行了一次调查统计,图1和图2是他们通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)求该班共有多少名学生;
(2)补全条形图;
(3)在扇形统计图中,求出“乒乓球”部分所对应的圆心角的度数;
(4)若全校有1500名学生,请估计“其他”的学生有多少名?

manfen5.com 满分网 查看答案
如图,已知AB=DC,∠ABC=∠DCB,E为AC、BD的交点.
①求证:△ABC≌△DCB;
②若BE=5cm,求CE的长.

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.