先判断DA=DC,过点D作DE∥AB,交AC于点F,交BC于点E,由等腰三角形的性质,可得点F是AC中点,继而可得EF是△CAB的中位线,继而得出EF、DF的长度,在Rt△ADF中求出AF,然后得出AC,tanB的值即可计算.
【解析】
∵CA是∠BCD的平分线,
∴∠DCA=∠ACB,
又∵AD∥BC,
∴∠ACB=∠CAD,
∴∠DAC=∠DCA,
∴DA=DC,
过点D作DE∥AB,交AC于点F,交BC于点E,
∵AB⊥AC,
∴DE⊥AC(等腰三角形三线合一的性质),
∴点F是AC中点,
∴AF=CF,
∴EF是△CAB的中位线,
∴EF=AB=2,
∵==1,
∴EF=DF=2,
在Rt△ADF中,AF==4,
则AC=2AF=8,
tanB===2.
故选B.