满分5 > 初中数学试题 >

如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(...

manfen5.com 满分网如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=manfen5.com 满分网(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.
(1)求该反比例函数和一次函数的解析式;
(2)求点B的坐标;
(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)
(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式; (2)求出反比例函数和一次函数的另外一个交点即可; (3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可. 【解析】 (1)过点A作AD⊥x轴于D, ∵C的坐标为(-2,0),A的坐标为(n,6), ∴AD=6,CD=n+2, ∵tan∠ACO=2, ∴==2, 解得:n=1, 故A(1,6), ∴m=1×6=6, ∴反比例函数表达式为:y=, 又∵点A、C在直线y=kx+b上, ∴, 解得:, ∴一次函数的表达式为:y=2x+4; (2)由得:=2x+4, 解得:x=1或x=-3, ∵A(1,6), ∴B(-3,-2); (3)分两种情况:①当AE⊥x轴时, 即点E与点D重合, 此时E1(1,0); ②当EA⊥AC时, 此时△ADE∽△CDA, 则=, DE==12, 又∵D的坐标为(1,0), ∴E2(13,0).
复制答案
考点分析:
相关试题推荐
某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球  B.乒乓球C.羽毛球  D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有______人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
manfen5.com 满分网
查看答案
甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程( 组) 求解)
查看答案
在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.

manfen5.com 满分网 查看答案
(1)计算:8+|-2|-4sin45°-manfen5.com 满分网      
(2)先化简,再求值:(1-manfen5.com 满分网)÷manfen5.com 满分网,其中m=2.
查看答案
在平面直角坐标系中,已知点A(-manfen5.com 满分网,0),B(manfen5.com 满分网,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.