满分5 > 初中数学试题 >

已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为...

已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD;
(3)设AD=2,AE=1,求⊙O直径的长.

manfen5.com 满分网
(1)由切线长定理,只需证明CB为⊙O的切线,再由已知的OB与AC切于点D,即可得出证明; (2)根据已知及等角的余角相等不难求得结论. (3)易得:△ADE∽△ABD,进而可得=;代入数据计算可得BE=3;即⊙O直径的长为3. (1)证明:∵∠ABC=90°, ∴OB⊥BC.(1分) ∵OB是⊙O的半径, ∴CB为⊙O的切线.(2分) 又∵CD切⊙O于点D, ∴BC=CD.(3分) (2)证明:∵BE是⊙O的直径, ∴∠BDE=90°. ∴∠ADE+∠CDB=90°.(4分) 又∵∠ABC=90°, ∴∠ABD+∠CBD=90°.(5分) 由(1)得BC=CD, ∴∠CDB=∠CBD. ∴∠ADE=∠ABD.(6分) (3)【解析】 由(2)得,∠ADE=∠ABD,∠A=∠A, ∴△ADE∽△ABD.(7分) ∴=.(8分) ∴=. ∴BE=3.(9分) ∴所求⊙O的直径长为3.(10分)
复制答案
考点分析:
相关试题推荐
响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.
(1)至少购进乙种电冰箱多少台?
(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?
查看答案
如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=manfen5.com 满分网6,AB=6manfen5.com 满分网
(1)求⊙O的半径;
(2)求图中阴影部分的面积.
查看答案
如图,已知反比例函数manfen5.com 满分网的图象经过点(manfen5.com 满分网,8),直线y=-x+b经过该反比例函数图象上的点Q(4,m).
(1)求上述反比例函数和直线的函数表达式;
(2)设该直线与x轴、y轴分别相交于A、B两点,与反比例函数图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.

manfen5.com 满分网 查看答案
在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.
求证:CE⊥BE.

manfen5.com 满分网 查看答案
某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1,2,3,4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.