满分5 > 初中数学试题 >

如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将...

manfen5.com 满分网如图,在等边△ABC中,AB=3,D、E分别是AB、AC上的点,且DE∥BC,将△ADE沿DE翻折,与梯形BCED重叠的部分记作图形L.
(1)求△ABC的面积;
(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;
(3)已知图形L的顶点均在⊙O上,当图形L的面积最大时,求⊙O的面积.
(1)作AH⊥BC于H,根据勾股定理就可以求出AH,由三角形的面积公式就可以求出其值; (2)如图1,当0<x≤1.5时,由三角形的面积公式就可以表示出y与x之间的函数关系式,如图2,当1.5<x<3时,重叠部分的面积为梯形DMNE的面积,由梯形的面积公式就可以求出其关系式; (3)如图4,根据(2)的结论可以求出y的最大值从而求出x的值,作FO⊥DE于O,连接MO,ME,求得∠DME=90°,就可以求出⊙O的直径,由圆的面积公式就可以求出其值. 【解析】 (1)如图3,作AH⊥BC于H, ∴∠AHB=90°. ∵△ABC是等边三角形, ∴AB=BC=AC=3. ∵∠AHB=90°, ∴BH=BC= 在Rt△ABC中,由勾股定理,得 AH=. ∴S△ABC==; (2)如图1,当0<x≤1.5时,y=S△ADE. 作AG⊥DE于G, ∴∠AGD=90°,∠DAG=30°, ∴DG=x,AG=x, ∴y==x2, ∵a=>0,开口向上,在对称轴的右侧y随x的增大而增大, ∴x=1.5时,y最大=, 如图2,当1.5<x<3时,作MG⊥DE于G, ∵AD=x, ∴BD=DM=3-x, ∴DG=(3-x),MF=MN=2x-3, ∴MG=(3-x), ∴y=, =-; (3),如图4,∵y=-; ∴y=-(x2-4x)-, y=-(x-2)2+, ∵a=-<0,开口向下, ∴x=2时,y最大=, ∵>, ∴y最大时,x=2, ∴DE=2,BD=DM=1.作FO⊥DE于O,连接MO,ME. ∴DO=OE=1, ∴DM=DO. ∵∠MDO=60°, ∴△MDO是等边三角形, ∴∠DMO=∠DOM=60°,MO=DO=1. ∴MO=OE,∠MOE=120°, ∴∠OME=30°, ∴∠DME=90°, ∴DE是直径, S⊙O=π×12=π.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,AB是半圆O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC.
(1)求证:BC平分∠PDB;
(2)求证:BC2=AB•BD;
(3)若PA=6,PC=6manfen5.com 满分网,求BD的长.
查看答案
在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为    查看答案
如图,已知直线l:y=manfen5.com 满分网x,过点M(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为   
manfen5.com 满分网 查看答案
manfen5.com 满分网如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为    cm. 查看答案
在△ABC中,已知∠C=90°,sinA+sinB=manfen5.com 满分网,则sinA-sinB=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.