已知点A、B、C是半径长为2的半圆O上的三个点,其中点A是弧BC的中点(如图),联结AB、AC,点D、E分别在弦AB、AC上,且满足AD=CE.
(1)求证:OD=OE;
(2)联结BC,当BC=2
时,求∠DOE的度数;
(3)若∠BAC=120°,当点D在弦AB上运动时,四边形ADOE的面积是否变化?若变化,请简述理由;若不变化,请求出四边形ADOE的面积.
考点分析:
相关试题推荐
在平面直角坐标系xOy中(如图),已知抛物线y=ax
2+4ax+c(a≠0)经过A(0,4),B(-3,1),顶点为G.
(1)求该抛物线的表达方式及点C的坐标;
(2)将(1)中求得的抛物线沿y轴向上平移m(m>0)个单位,所得新抛物线与y轴的交点记为点D.当△ACD时等腰三角形时,求点D的坐标;
(3)若点P在(1)中求得的抛物线的对称轴上,联结PO,将线段PO绕点P逆时针转90°得到线段PO′,若点O′恰好落在(1)中求得的抛物线上,求点P的坐标.
查看答案
已知:点D是Rt△ABC的BC边的一个动点(如图),过点D作DE⊥AB,垂足为E,点F在AB边上(点F与点B不重合),且满足FE=BE,联结CF、DF.
(1)当DF平分∠CFB时,求证:
:
(2)若AB=10,tanB=
.当DF⊥CF时,求BD的长.
查看答案
如图,一条细绳系着一个小球在平面内摆动,已知细绳从悬挂点O到球心的长度OG为50厘米,小球在左、右两个最高位置时(不考虑阻力等其他因素),细绳相应所成的角90°.
(1)求小球在最高位置和最低位置时的高度差:
(2)联结EG,求∠OGE的余切值.
查看答案
如图,已知点D、E分别在△ABC的边AB和AC上,DE∥BC,AD=
DB,四边形DBCE的面积等于16.
(1)求△ABC的面积;
(2)如果向量
=
,向量
=
,请用
、
表示向量
.
查看答案
如图已知△ABC中AB=AC=10,BC=16,矩形DEFG的边EF在△ABC的边BC上,顶点D、G分别在AB、AC上,设DE的长为x,矩形DEFG的面积为y,求y关于x的函数关系式,并写出这个函数的定义域.
查看答案