从1~9这9个数字中取出三个可以组成六个不同的三位数.如果六个三位数的和是3330,那么这六个三位数中最大的是?
考点分析:
相关试题推荐
有些三位数:(1)它的各个数位上的数字互不相同;(2)这个三位数等于组成它的三个数字所能组成的所有两位数的和.那么满足以上两个条件的所有三位数的和是?
查看答案
一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.
查看答案
甲乙都是两位数,将甲的十位数与个位数对调得丙(甲≠丙),将乙的十位数与个位数对调得丁,丙丁的乘积等于甲乙的乘积,而甲乙两数的数字全为偶数,并且数字不能完全相同(如24和42),则甲乙两数之和最大值是多少?
查看答案
三个两位数的和是40,如果每一个数的十位数与个位数互换,组成三个新的两位数,它们的和是多少?
查看答案
巳知二次函数y=a(x
2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的 对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的 右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等 (即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等 (即这四条线段能构成平行四边形)?请说明理由.
查看答案