满分5 > 初中数学试题 >

如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,...

manfen5.com 满分网如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.
(1)求直线CD的解析式;
(2)求抛物线的解析式;
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;
(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
(1)利用待定系数法求出直线解析式; (2)利用待定系数法求出抛物线的解析式; (3)关键是证明△CEQ与△CDO均为等腰直角三角形; (4)如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度. 利用轴对称的性质、两点之间线段最短可以证明此时△PCF的周长最小. 如答图③所示,利用勾股定理求出线段C′C″的长度,即△PCF周长的最小值. 【解析】 (1)∵C(0,1),OD=OC,∴D点坐标为(1,0). 设直线CD的解析式为y=kx+b(k≠0), 将C(0,1),D(1,0)代入得:, 解得:b=1,k=-1, ∴直线CD的解析式为:y=-x+1. (2)设抛物线的解析式为y=a(x-2)2+3, 将C(0,1)代入得:1=a×(-2)2+3,解得a=. ∴y=(x-2)2+3=x2+2x+1. (3)证明:由题意可知,∠ECD=45°, ∵OC=OD,且OC⊥OD,∴△OCD为等腰直角三角形,∠ODC=45°, ∴∠ECD=∠ODC,∴CE∥x轴,则点C、E关于对称轴(直线x=2)对称, ∴点E的坐标为(4,1). 如答图①所示,设对称轴(直线x=2)与CE交于点F,则F(2,1), ∴ME=CM=QM=2,∴△QME与△QMC均为等腰直角三角形,∴∠QEC=∠QCE=45°. 又∵△OCD为等腰直角三角形,∴∠ODC=∠OCD=45°, ∴∠QEC=∠QCE=∠ODC=∠OCD=45°, ∴△CEQ∽△CDO. (4)存在. 如答图②所示,作点C关于直线QE的对称点C′,作点C关于x轴的对称点C″,连接C′C″,交OD于点F,交QE于点P,则△PCF即为符合题意的周长最小的三角形,由轴对称的性质可知,△PCF的周长等于线段C′C″的长度. (证明如下:不妨在线段OD上取异于点F的任一点F′,在线段QE上取异于点P的任一点P′,连接F′C″,F′P′,P′C′. 由轴对称的性质可知,△P′CF′的周长=F′C″+F′P′+P′C′; 而F′C″+F′P′+P′C′是点C′,C″之间的折线段, 由两点之间线段最短可知:F′C″+F′P′+P′C′>C′C″, 即△P′CF′的周长大于△PCE的周长.) 如答图③所示,连接C′E, ∵C,C′关于直线QE对称,△QCE为等腰直角三角形, ∴△QC′E为等腰直角三角形, ∴△CEC′为等腰直角三角形, ∴点C′的坐标为(4,5); ∵C,C″关于x轴对称,∴点C″的坐标为(-1,0). 过点C′作C′N⊥y轴于点N,则NC′=4,NC″=4+1+1=6, 在Rt△C′NC″中,由勾股定理得:C′C″===. 综上所述,在P点和F点移动过程中,△PCF的周长存在最小值,最小值为.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案
阅读材料:求1+2+22+23+24+…+22013的值.
【解析】
设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
   2S=2+22+23+24+25+…+22013+22014
   将下式减去上式得2S-S=22014-1
   即S=22014-1
   即1+2+22+23+24+…+22013=22014-1
请你仿照此法计算:
(1)1+2+22+23+24+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数).
查看答案
国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:manfen5.com 满分网=1.732,manfen5.com 满分网=1.414)
manfen5.com 满分网
查看答案
manfen5.com 满分网某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.
组别ABCD
处理方式迅速离开马上救助视情况而定只看热闹
人数m30n5
请根据表图所提供的信息回答下列问题:
(1)统计表中的m=______,n=______
(2)补全频数分布直方图;
(3)若该校有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?
查看答案
为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.