探究:如图,四边形ABCD中,AB∥CD,E为AD的中点,若EF∥AB.求证:BF=CF
知识应用:如图,坐标平面内有两个点A和B其中点A的坐标为(x
1,y
1),点B的坐标为(x
2,y
2),求AB的中点C的坐标.
知识拓展:在上图中,点A的坐标为(4,5),点B的坐标为(-6,-1),分别在x轴和y轴上找一点C和D,使得以A、B、C、D为顶点的四边形是平行四边形,求出点C和点D的坐标.
查看答案
王老师给出了一个二次函数的若干特点,要求甲、乙、丙三名同学按照这些特点求出它的解析式并画出它的图象,然后根据图象再说出一些特征.
甲同学首先求出解析式、画完图象并回答,他说:①抛物线的顶点为(1,-8);②抛物线与y轴的交点在x轴的下方; ③抛物线开口向上;
乙同学第二个求出解析式并画出图象,他回答:①抛物线的对称轴为直线x=1; ②抛物线经过四个象限;③抛物线与x轴的两个交点间的距离为6;
丙同学最后一个完成任务,他说了他的看法:①甲、乙的各种说法都不对;②抛物线过(-1,5)和(5,5);③抛物线不过(-1,0).
王老师听了他们的意见,作出了评价,他说:“与正确的函数的图象比较,你们三个人中,有一个人三句话都回答正确了,还有一个同学有两句话是对的,另外一个同学很遗憾,回答得都不对”
请你根据王老师的评价,分析一下,哪一位同学的说法都是正确的,并根据正确的说法,求出这条抛物线的解析式.
查看答案