满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,...

如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)
(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为______

manfen5.com 满分网
(1)若△CEF与△ABC相似. ①当AC=BC=2时,△ABC为等腰直角三角形; ②当AC=3,BC=4时,分两种情况: (I)若CE:CF=3:4,如答图2所示,此时EF∥AB,CD为AB边上的高; (II)若CF:CE=3:4,如答图3所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点; (2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似. 【解析】 (1)若△CEF与△ABC相似. ①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示. 此时D为AB边中点,AD=AC=; ②当AC=3,BC=4时,有两种情况: (I)若CE:CF=3:4,如答图2所示. ∵CE:CF=AC:BC,∴EF∥AB. 由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高. 在Rt△ABC中,AC=3,BC=4, ∴AB=5, ∴cosA=. AD=AC•cosA=3×=1.8; (II)若CF:CE=3:4,如答图3所示. ∵△CEF∽△CAB,∴∠CEF=∠B. 由折叠性质可知,∠CEF+∠ECD=90°, 又∵∠A+∠B=90°, ∴∠A=∠ECD,∴AD=CD. 同理可得:∠B=∠FCD,CD=BD, ∴此时AD=AB=×5=2.5. 综上所述,当AC=3,BC=4时,AD的长为1.8或2.5. (2)当点D是AB的中点时,△CEF与△ABC相似.理由如下: 如答图3所示,连接CD,与EF交于点Q. ∵CD是Rt△ABC的中线,∴CD=DB=AB,∴∠DCB=∠B. 由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°, ∵∠B+∠A=90°,∴∠CFE=∠A, 又∵∠C=∠C,∴△CEF∽△CBA.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C,楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度(结果精确到0.1m).(参考数据:manfen5.com 满分网≈1.41,manfen5.com 满分网≈1.73)
查看答案
manfen5.com 满分网如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.
(1)求证:DE=BF;
(2)连接EF,写出图中所有的全等三角形.(不要求证明)
查看答案
为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?
查看答案
一只不透明的袋子中装有白球2个和黄球1个,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记下颜色后不放回,搅匀后再从中任意摸出1个球,请用列表或画树状图的方法求两次都摸出白球的概率.
查看答案
2012年我国国民经济运行总体平稳,全年全国公共财政收入117210亿元,2008-2012年全国公共财政收入及其增长速度情况如图所示:
manfen5.com 满分网
(1)这五年中全国公共财政收入增长速度最高的年份是______年;
(2)2012年的全国公共财政收入比2011年多______亿元;
(3)这五年的全国公共财政收入增长速度的平均数是______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.