连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.
【解析】
连接OC,如图所示:
∵圆心角∠BOC与圆周角∠CDB都对弧BC,
∴∠BOC=2∠CDB,又∠CDB=20°,
∴∠BOC=40°,
又∵CE为圆O的切线,
∴OC⊥CE,即∠OCE=90°,
则∠E=90°-40°=50°.
故选A.